题解 CF961G 【Partitions】
题目大意
给出\(n,k\),以及\(w_{1,2,..,n}\),定义一个集合\(S\)的权值\(W(S)=|S|\sum_{x\in S} w_x\),定义一个划分\(R\)的权值为\(\sum_{S\in R} W(S)\)。求出每种划分权值之和。
思路
这个题目有两种方法。一种就是直接从一眼式中暴推出答案,另外一种就是考虑组合意义,这里着重介绍后面一种。
我们发现\(W(S)\)实际上就等价于在\(S\)中的元素会对该集合中每个元素提供\(w_i\)的贡献。于是,我们考虑一个点会产生的贡献,首先对它自己会有\(w_i\begin{Bmatrix}n\\k\end{Bmatrix}\)的贡献,对其他点有\((n-1)\begin{Bmatrix}n-1\\k\end{Bmatrix}w_i\)的贡献。这里解释一下后面那个,可以理解为先把\(n-1\)个分到\(k\)个盒子里(如果要产生贡献肯定要有跟它在同一个集合的元素),然后我可以加到这\(k\)里面任意一个,一共就是\(n-1\)个元素。
于是,我们得到答案就是:
\]
\(\texttt{Code}\)
#include <bits/stdc++.h>
using namespace std;
#define Int register int
#define mod 1000000007
#define MAXN 200005
template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');}
int n,k,w[MAXN],fac[MAXN],ifac[MAXN];
int mul (int a,int b){return 1ll * a * b % mod;}
int dec (int a,int b){return a >= b ? a - b : a + mod - b;}
int add (int a,int b){return a + b >= mod ? a + b - mod : a + b;}
int binom (int a,int b){return a >= b ? mul (fac[a],mul (ifac[b],ifac[a - b])) : 0;}
int qkpow (int a,int b){int res = 1;for (;b;b >>= 1,a = mul(a,a)) if (b & 1) res = mul (res,a) % mod;return res;}
int Sitelin (int n,int m){int res = 0;for (Int i = 0,tmp;i <= m;++ i) tmp = mul (binom (m,i),qkpow (i,n)),m - i & 1 ? (res = dec (res,tmp)) : (res = add (res,tmp));return 1ll * res * ifac[m] % mod;}
signed main(){
read (n,k);fac[0] = 1;int sum = 0;
for (Int i = 1;i <= n;++ i) read (w[i]),sum = add (sum,w[i]);
for (Int i = 1;i <= k;++ i) fac[i] = mul (fac[i - 1],i);ifac[k] = qkpow (fac[k],mod - 2);for (Int i = k;i;-- i) ifac[i - 1] = mul (ifac[i],i);
write (mul (sum,add (Sitelin (n,k),mul (n - 1,Sitelin (n - 1,k))))),putchar ('\n');
return 0;
}
题解 CF961G 【Partitions】的更多相关文章
- 题解 [CF961G] Partitions
题面 解析 首先我们观察这个定义, 可以发现每个元素在统计答案时是平等的, 也就是单个元素的权值对答案没有特别的影响. 设元素权值为\(w[i]\), 那么我们就可以知道答案是\(\sum_{i=1} ...
- CF961G Partitions(第二类斯特林数)
题目 CF961G 前置 斯特林数\(\Longrightarrow\)斯特林数及反演总结 做法 相信大家能得出一个一眼式:\[Ans=\sum\limits_{i=1}^n w_i\sum\limi ...
- CF961G Partitions
传送门 luogu 显然每个数的贡献可以一起算感性理解一下,于是答案就是权值总和乘以每个数被算了几次 那个"集合大小为\(|S|\)的集合权值为权值和乘\(|S|\)",可以看成一 ...
- CF961G Partitions(第二类斯特林数)
传送门 对于每一个元素,我们只要能求出它的出现次数\(sum\),那么每个元素的贡献都是一样的,最终的答案为\(sum\times \sum_{i=1}^n w_i\) 那么分别讨论 如果这个元素自己 ...
- FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ
因为垃圾电脑太卡了就重开了一个... 前传:多项式Ⅰ u1s1 我预感还会有Ⅲ 多项式基础操作: 例题: 26. CF438E The Child and Binary Tree 感觉这题作为第一题还 ...
- 【CF961G】Partitions 第二类斯特林数
[CF961G]Partitions 题意:给出n个物品,每个物品有一个权值$w_i$,定义一个集合$S$的权值为$W(S)=|S|\sum\limits_{x\in S} w_x$,定义一个划分的权 ...
- 【CF961G】Partitions(第二类斯特林数)
[CF961G]Partitions(第二类斯特林数) 题面 CodeForces 洛谷 题解 考虑每个数的贡献,显然每个数前面贡献的系数都是一样的. 枚举当前数所在的集合大小,所以前面的系数\(p\ ...
- 【题解】Codeforces 961G Partitions
[题解]Codeforces 961G Partitions cf961G 好题啊哭了,但是如果没有不小心看了一下pdf后面一页的提示根本想不到 题意 已知\(U=\{w_i\}\),求: \[ \s ...
- 【cf961G】G. Partitions(组合意义+第二类斯特林数)
传送门 题意: 给出\(n\)个元素,每个元素有价值\(w_i\).现在要对这\(n\)个元素进行划分,共划分为\(k\)组.每一组的价值为\(|S|\sum_{i=0}^{|S|}w_i\). 最后 ...
随机推荐
- 证明:(a,[b,c]) = [(a,b),(a,c)]
这题是潘承洞.潘承彪所著<初等数论>(第三版)第一章第5节里一个例题,书中采用算术基本定理证明,并指出要直接用第4节的方法来证是较困难的. 现采用第4节的方法(即最大公约数理论里的几个常用 ...
- Android Jetpack基本架构之ViewModel+LiveData+DataBinding入门
前提:导入所有依赖,开启DataBinding app的build.gradle android { defaultConfig { ... dataBinding { enabled true } ...
- 一文读懂Base64编码
Base64编码 字符对应表 上表就是用来表示Base64,一共64个字符,A-Z,a-z,0-9,+,-,还有=(作为补位) 无论将文件,字符串,还是什么转为Base64,一定是用上表的字符表示. ...
- Django自带评论功能的基本使用
1. 模块安装 pip install django-contrib-comments 2. 注册APP INSTALLED_APP=( #..., 'django_comments', 'djang ...
- windows/linux 页面编码区别导致 python 乱码
http://blog.csdn.net/haiross/article/details/36189103 可以先看下这篇文章..写的比较用心和详细并且高深..我只是记流水账的. 直到今天我才注意到 ...
- 20210805 noip31
考场 没有一眼题 T1 想到先贪心地算出最大得分,任意构造出一种方案,不断调整以增大字典序. T2 发现在 \(x_k\) 确定的情况下操作次数就是左右两边的逆序对数,\(x_i\) 互不相同时直接找 ...
- 【曹工杂谈】Maven底层容器Plexus Container的前世今生,一代芳华终落幕
Maven底层容器Plexus Container的前世今生,一代芳华终落幕 前言 说实话,我非常地纠结,大家平时只是用Maven,对于内部的实现其实也不关心,我现在非要拉着大家给大家讲.这就有个问题 ...
- 使用python快速搭建http服务
python2语法:python -m SimpleHTTPServer python3语法:python -m http.server 在局域网中使用web去访问http:/IP:8000即可 可以 ...
- 【转】Linux 查看端口占用情况
Linux 查看端口占用情况可以使用 lsof 和 netstat 命令. lsof lsof(list open files)是一个列出当前系统打开文件的工具. lsof 查看端口占用语法格式: l ...
- 【PHP数据结构】顺序表(数组)的相关逻辑操作
在定义好了物理结构,也就是存储结构之后,我们就需要对这个存储结构进行一系列的逻辑操作.在这里,我们就从顺序表入手,因为这个结构非常简单,就是我们最常用的数组.那么针对数组,我们通常都会有哪些操作呢? ...