NOIP 模拟 9 数颜色
题解
一道裸的数据结构题
正解是排序 \(+\) 二分,但是这怎么能有动态开点线段树好写呢?
于是我就打了暴力,骗了五十分。
对于每种颜色,我们在下标上开一颗线段树,对于交换若颜色相同则跳过,否则直接修改两种颜色的线段树。
跟正解一样是 \(\mathcal O(nlogn)\),但常数巨大,慢三倍还多
Code:
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
using namespace std;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++
inline int read() {
ri x=0,f=1;char ch=gc();
while(ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=gc();}
while(ch>='0'&&ch<='9') {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
return x*f;
}
}
using IO::read;
namespace nanfeng{
#define cmax(x,y) ((x)>(y)?(x):(y))
#define cmin(x,y) ((x)>(y)?(y):(x))
#define FI FILE *IN
#define FO FILE *OUT
static const int N=3e5+7;
int a[N],n,m;
struct Seg{
#define ls(x) T[x].l
#define rs(x) T[x].r
#define sum(x) T[x].sum
struct Segmenttree{int l,r,sum;}T[N<<5];
int rt[N],tot;
inline void up(int x) {
int l=ls(x),r=rs(x);
sum(x)=sum(l)+sum(r);
}
void update(int &x,int l,int r,int p,int w) {
if (!x) x=p(tot);
if (l==r) {sum(x)+=w;return;}
int mid((l+r)>>1);
if (p<=mid) update(ls(x),l,mid,p,w);
else update(rs(x),mid+1,r,p,w);
up(x);
}
int query(int x,int l,int r,int lt,int rt) {
if (!x) return 0;
if (l<=lt&&rt<=r) return sum(x);
int mid((lt+rt)>>1),res=0;
if (l<=mid) res+=query(ls(x),l,r,lt,mid);
if (r>mid) res+=query(rs(x),l,r,mid+1,rt);
return res;
}
}T;
inline int main() {
// FI=freopen("nanfeng.in","r",stdin);
// FO=freopen("nanfeng.out","w",stdout);
n=read(),m=read();
for (ri i(1);i<=n;p(i)) {
int c=read();a[i]=c;
T.update(T.rt[c],1,n,i,1);
}
for (ri i(1);i<=m;p(i)) {
int t=read();
if (t==1) {
int l=read(),r=read(),c=read();
printf("%d\n",T.query(T.rt[c],l,r,1,n));
} else {
int x=read();
if (a[x]==a[x+1]) continue;
T.update(T.rt[a[x]],1,n,x,-1);
T.update(T.rt[a[x]],1,n,x+1,1);
T.update(T.rt[a[x+1]],1,n,x+1,-1);
T.update(T.rt[a[x+1]],1,n,x,1);
swap(a[x],a[x+1]);
}
}
return 0;
}
}
int main() {return nanfeng::main();}
NOIP 模拟 9 数颜色的更多相关文章
- noip模拟赛 数颜色
分析:高级数据结构学傻了.....一眼看上去觉得是莫队,发现带修改,于是分块,由于写的常数很大,只有70分. 正解很简单,记录下颜色为c的每只兔子的位置,每次二分找这个区间有多少只这种颜色的兔子就可以 ...
- 2018.07.08 NOIP模拟 好数(线段树)
好数 题目背景 SOURCE:NOIP2016-AHSDFZ T3 题目描述 我们定义一个非负整数是"好数",当且仅当它符合以下条件之一: 1. 这个数是 0 或 1 . 2. 所 ...
- 8.23考试总结(NOIP模拟46)[数数·数树·鼠树·ckw的树]
T1 数数 解题思路 大概是一个签到题的感觉...(但是 pyt 并没有签上) 第一题当然可以找规律,但是咱们还是老老实实搞正解吧... 先从小到大拍个序,这样可以保证 \(a_l<a_r\) ...
- 2018.10.09 NOIP模拟 好数(双向搜索)
传送门 直接双向搜索出两边可行解,然后把两边的可行解合并起来得出答案就行了. 注意合并的时候可以利用排序和单调性优化时间复杂度. 直接枚举合并是O(siza∗sizb)O(siza*sizb)O(si ...
- CH Round #58 - OrzCC杯noip模拟赛day2
A:颜色问题 题目:http://ch.ezoj.tk/contest/CH%20Round%20%2358%20-%20OrzCC杯noip模拟赛day2/颜色问题 题解:算一下每个仆人到它的目的地 ...
- 2019.8.3 NOIP模拟测试12 反思总结【P3938 斐波那契,P3939 数颜色,P3940 分组】
[题解在下面] 早上5:50,Gekoo同学来到机房并表态:“打暴力,打暴力就对了,打出来我就赢了.” 我:深以为然. (这是个伏笔) 据说hzoi的人还差两次考试[现在是一次了]就要重新分配机房,不 ...
- 2019.8.3 [HZOI]NOIP模拟测试12 B. 数颜色
2019.8.3 [HZOI]NOIP模拟测试12 B. 数颜色 全场比赛题解:https://pan.baidu.com/s/1eSAMuXk 数据结构学傻的做法: 对每种颜色开动态开点线段树直接维 ...
- 20190803 NOIP模拟测试12「斐波那契(fibonacci)· 数颜色 · 分组 」
164分 rank11/64 这次考的不算太差,但是并没有多大的可能性反超(只比一小部分人高十几分而已),时间分配还是不均,T2两个半小时,T1半个小时,T3-额十几分钟吧 然额付出总是与回报成反比的 ...
- noip模拟9[斐波那契·数颜色·分组](洛谷模拟测试)
这次考试还是挺好的 毕竟第一题被我给A了,也怪这题太简单,规律一眼就看出来了,但是除了第一题,剩下的我只有30pts,还是菜 第二题不知道为啥我就直接干到树套树了,线段树套上一个权值线段树,然后我发现 ...
随机推荐
- STM32F103学习进程
软硬件下载程序和程序运行的相关问题和解决方案,以我自身买的STM32F103C8T6为例 (1) 硬件需要 1. 购买一个STM32F103XXX的板子.这是一个操作实践性非常强的一个学习过程,如果没 ...
- ESP32构建系统 (传统 GNU Make)
概述: 一个 ESP-IDF 项目可以看作是多个不同组件的集合,ESP-IDF 可以显式地指定和配置每个组件.在构建项目的时候,构建系统会前往 ESP-IDF 目录.项目目录和用户自定义目录(可选)中 ...
- Lua控制语句
目录 1. 控制结构 if-else 单个 if 分支 型 两个分支: if-else 型 多个分支: if-elseif-else型 2. while 型控制结构 3. repeat控制结构 4. ...
- OpenMVG 系列 (2):Image 和 Numeric
OpenMVG 的功能模块由若干核心库组成,本文主要介绍 Image 和 Numeric 两个库 1 Image Image 库包含图像容器 Image<T>.图像IO读写函数 Read ...
- ARTS第八周
1.Algorithm:每周至少做一个 leetcode 的算法题2.Review:阅读并点评至少一篇英文技术文章3.Tip:学习至少一个技术技巧4.Share:分享一篇有观点和思考的技术文章 以下是 ...
- ms17-010 永恒之蓝漏洞复现(CVE-2017-0143)
0x01 首先对目标机的开放端口进行探测,我们可以使用探测神器nmap 发现开放的445端口,然后进行下一步的ms17-010的漏洞验证 0x02 打开MSF美少妇神器,用search命令搜索ms17 ...
- CF1539B Love Song[题解]
Love Song 题目大意 给定长度为 \(n\) 的字符串和 \(q\) 个区间 \([l,r]\) .定义一个字符的值为该字母在字母表中的序号,对于给定的每个区间,求其中所有字符的值的和. 分析 ...
- 「AGC030D」Inversion Sum
「AGC030D」Inversion Sum 传送门 妙啊. 由于逆序对的个数最多只有 \(O(n^2)\) 对,而对于每一个询问与其相关的逆序对数也最多只有 \(O(n)\) 对,我们可以对于每一对 ...
- C语言:地址
一切都是地址 C语言用变量来存储数据,用函数来定义一段可以重复使用的代码,它们最终都要放到内存中才能供 CPU 使用.数据和代码都以二进制的形式存储在内存中,计算机无法从格式上区分某块内存到底存储的是 ...
- RPC远程协议之原理分析
在近几年工作中发现,功能服务化或微服务化越来越流行,逐渐成为实现中大型分布式系统架构的主要方式,而在分布式系统中的不同节点应用间的通信中,RPC远程协议扮演关键作用.实际上,在日常工作中,我们也多多少 ...