【笔记】SVM思想解决回归问题
使用svm思想解决回归问题
使用svm思想解决是如何解决回归问题,其中回归问题的本质就是找一条线,能够最好的拟合数据点
怎么定义拟合就是回归算法的关键,线性回归算法就是让预测的直线的MSE的值最小,对于SVM来说,拟合的定义是指定一个margin值,在这个margin范围里面,包含的数据点越多越好,包含的越多就代表这个范围能比较好的表达样本数据点,这种情况下取中间的直线作为真正的回归结果,用其来预测其他点的相应的值
在训练的时候是要对margin的范围进行一个指定,这就要引入一个新的超参数,即上下两根直线到中间的直线的垂直距离
这个思路和前面SVM解决分类问题的思路是有点相反的意思,前面是越少越好,这里是越多越好
具体操作实现
(在notebook中)
加载好必要的包,使用波士顿房价数据集,进行分割数据集的操作,随机种子为666,
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
boston = datasets.load_boston()
X = boston.data
y = boston.target
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=666)
sklearn中使用SVR和LinearSVR,这两个都是解决回归问题的类,构造的时候的参数设置与先前(链接)差距不大,使用LinearSVR要传入参数epsilon,然后调用函数实例化并fit操作,最后计算出测试数据集的准确度
from sklearn.pipeline import Pipeline
from sklearn.svm import SVR
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVR
def StandardLinearSVR(epsilon=0.1):
return Pipeline([
("std_scaler",StandardScaler()),
("linearSVR",LinearSVR(epsilon=epsilon))
])
svr = StandardLinearSVR()
svr.fit(X_train,y_train)
svr.score(X_test,y_test)
结果如下(不能只能一次得到结果)
以上就是简单的对于SVM解决回归问题的操作
【笔记】SVM思想解决回归问题的更多相关文章
- 机器学习:SVM(SVM 思想解决回归问题)
一.SVM 思想在解决回归问题上的体现 回归问题的本质:找到一条直线或者曲线,最大程度的拟合数据点: 怎么定义拟合,是不同回归算法的关键差异: 线性回归定义拟合方式:让所有数据点到直线的 MSE 的值 ...
- 【笔记】使用scikit-learn解决回归问题
使用sklearn解决回归问题 依然是加载数据 import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...
- SVM分类与回归
SVM(支撑向量机模型)是二(多)分类问题中经常使用的方法,思想比较简单,但是具体实现与求解细节对工程人员来说比较复杂,如需了解SVM的入门知识和中级进阶可点此下载.本文从应用的角度出发,使用Libs ...
- 李宏毅老师机器学习课程笔记_ML Lecture 1: 回归案例研究
引言: 最近开始学习"机器学习",早就听说祖国宝岛的李宏毅老师的大名,一直没有时间看他的系列课程.今天听了一课,感觉非常棒,通俗易懂,而又能够抓住重点,中间还能加上一些很有趣的例子 ...
- 机器学习笔记(4):多类逻辑回归-使用gluton
接上一篇机器学习笔记(3):多类逻辑回归继续,这次改用gluton来实现关键处理,原文见这里 ,代码如下: import matplotlib.pyplot as plt import mxnet a ...
- SVM之解决线性不可分
SVM之问题形式化 SVM之对偶问题 SVM之核函数 >>>SVM之解决线性不可分 写在SVM之前——凸优化与对偶问题 上一篇SVM之核函数介绍了通过计算样本核函数,实际上将样本映射 ...
- 机器学习实战笔记(Python实现)-04-Logistic回归
--------------------------------------------------------------------------------------- 本系列文章为<机器 ...
- 机器学习笔记—svm算法(上)
本文申明:本文原创,如转载请注明原文出处. 引言:上一篇我们讲到了logistic回归,今天我们来说一说与其很相似的svm算法,当然问题的讨论还是在线性可分的基础下讨论的. 很多人说svm是目前最好的 ...
- 视觉机器学习读书笔记--------SVM方法
SVM是一种二类分类模型,有监督的统计学习方法,能够最小化经验误差和最大化几何边缘,被称为最大间隔分类器,可用于分类和回归分析.支持向量机的学习策略就是间隔最大化,可形式化为一个求解凸二次规划的问题, ...
随机推荐
- Python协程你学会了吗?
在学习协程之前,你需要先知道协程是什么?协程又称为微线程,一个程序可以包含多个协程,可以对比与一个进程包含多个线程,因而下面我们来比较协程和线程.我们知道多个线程相对独立,有自己的上下文,切换受系统控 ...
- CentOS-Docker安装MySQL(单点)
下载镜像 $ docker pull mysql 创建相关目录和文件 $ mkdir -p /usr/mysql/conf /usr/mysql/data $ chmod -R 755 /usr/my ...
- DL基础补全计划(三)---模型选择、欠拟合、过拟合
PS:要转载请注明出处,本人版权所有. PS: 这个只是基于<我自己>的理解, 如果和你的原则及想法相冲突,请谅解,勿喷. 前置说明 本文作为本人csdn blog的主站的备份.(Bl ...
- C语言:特殊点
编译器给变量分配内存在函数外部定义的变量叫做全局变量(Global Variable),在函数内部定义的变量叫做局部变量(Local Variable)一个变量,即使不给它赋值,它也会有一个默认的值, ...
- C语言变量 类型判断
变量三要素: 一个变量有三个基本的要素,变量的名称,变量的类型,变量的值.所以int a = 10; 变量名为a,变量的存储类型为int型,变量的值为10. 变量还有一些属性如作用范围和存储类型. 变 ...
- python 异常获取方法
import sys #第1:print(6/0) #直接运行该命令,出现异常,程序终止 #异常提示: '''Traceback (most recent call last): File " ...
- Grafana、Prometheus、mtail-日志监控
一:日志如何监控 在上一篇博客Grafana.Prometheus-监控平台中,简单了解了Grafana与Prometheus对项目做特定的监控打点,可视化的配置操作. 但是对于没有设置监控或者不容易 ...
- Beam Search快速理解及代码解析(上)
Beam Search 简单介绍一下在文本生成任务中常用的解码策略Beam Search(集束搜索). 生成式任务相比普通的分类.tagging等NLP任务会复杂不少.在生成的时候,模型的输出是一个时 ...
- 微信小程序云开发-云存储的应用-识别驾驶证
一.准备工作 1.创建云函数identify 2.云函数identify中index.js代码 1 // 云函数入口文件 2 const cloud = require('wx-server-sdk' ...
- ArcGis Server安装与使用
ArcGis Server安装 下载ArcGisServer 双击Setup.exe,然后一直下一步. 安装完成后,点击完成,弹出如下界面: 选择第三个选项,然选择[.ecp]后缀名的授权文件. 然后 ...