题解 biology
赛时靠spfa求最长路骗了30pts
- spfa的时间复杂度是\(O(k|E|)\),不是\(O(k|N|)\)!
- dijkstra 时间复杂度\(O((n+m)logn)\)
- 特别注意这两个的复杂度都和边数密切相关
spfa的话按a值分层,按层建边即可
正解是个dp,考场上想到dp,但dp思路错了
令\(dp[i][j]\)为在\((i, j)\)位置结束时的最大和
则
\]
又一个带绝对值的题,可以分情况讨论
对于一个点\((i, j)\),可以用四个二维树状数组分别维护\(i,j\)为正,负时的最大值,
根据点\((i, j)\)和\((i', j')\)的位置关系查询即可,复杂度\(O(nmlognlogm)\)
但是还有一种\(O(nm)\)的解法:
题面里那个 \(|i-i'|+|j-j'|\) 其实是曼哈顿距离
这里我们要求其最大值
- 曼哈顿距离在处理绝对值时,常转换为切比雪夫距离以简化计算
考虑转化为切比雪夫距离,那方程可以化为
\]
要求距离尽可能大,所以我们可以维护全局 \(max\ \{dp[i'][j']+i', dp[i'][j']-i', dp[i'][j']+j', dp[i'][j']-j'\}\), 转移时用这个分情况转移
yysy,我因为脑残没仔细看题面a=0的点舍弃从下午3点调到6点
Code:
#include <bits/stdc++.h>
using namespace std;
#define INF 0x7fffffffffff
#define N 2010
#define ll long long
#define ld long double
#define usd unsigned
#define ull unsigned long long
//#define int long long
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf, 1, 1<<21, stdin)), p1==p2?EOF:*p1++)
char buf[1<<21], *p1=buf, *p2=buf;
inline int read() {
int ans=0, f=1; char c=getchar();
while (!isdigit(c)) {if (c=='-') f=-f; c=getchar();}
while (isdigit(c)) {ans=(ans<<3)+(ans<<1)+(c^48); c=getchar();}
return ans*f;
}
int n, m;
namespace force{
int tot, pos;
int head[N*N], size, lim[N*N], lcnt; ll dis[N*N];
bool vis[N*N];
int ss, st;
struct point{int a, b, x, y, rk; ll w;}mp[N*N];
inline bool operator < (point a, point b) {return a.a<b.a;}
struct edge{int to, next, val;}e[N*N*3];
inline void add(int s, int t, int w) {edge* k=&e[++size]; k->to=t; k->val=w; k->next=head[s]; head[s]=size;}
void spfa(int s) {
queue<int> q;
dis[s]=0; vis[s]=1; q.push(s);
int t;
while (q.size()) {
t=q.front(); q.pop();
vis[t]=0;
for (int i=head[t],v; i; i=e[i].next) {
v = e[i].to;
//cout<<t<<": "<<dis[t]<<' '<<mp[t].w<<' '<<e[i].val<<' '<<dis[v]<<endl;
if (dis[t]+mp[t].w+e[i].val < dis[v]) {
dis[v] = dis[t]+mp[t].w+e[i].val;
if (!vis[v]) q.push(v);
}
}
}
//cout<<"dis: "; for (int i=1; i<=tot+2; ++i) cout<<dis[i]<<' '; cout<<endl;
}
void solve() {
tot=0; for (int i=1; i<=n; ++i) for (int j=1; j<=m; ++j) mp[++tot].a=read(), mp[tot].x=i, mp[tot].y=j, mp[tot].rk=tot;
tot=0; for (int i=1; i<=n; ++i) for (int j=1; j<=m; ++j) mp[++tot].w=-read();
sort(mp+1, mp+tot+1);
//for (int i=1; i<=tot; ++i) cout<<mp[i].a<<' '; cout<<endl;
for (pos=1; pos<=tot; ++pos) if (mp[pos].a!=mp[pos-1].a) lim[++lcnt]=pos;
lim[++lcnt]=tot+1;
for (int i=1; i<=tot+10; ++i) dis[i]=INF;
ss=tot+1; st=tot+2;
for (int i=lim[1]; i<lim[2]; ++i) add(ss, i, 0); //, cout<<"ss: "<<ss<<' '<<i<<endl;
for (int i=lim[lcnt-1]; i<=tot; ++i) add(i, st, 0); //, cout<<"st: "<<i<<' '<<st<<endl;
for (int i=1; i<lcnt; ++i) {
for (int j=lim[i]; j<lim[i+1]; ++j) {
for (int k=lim[i+1]; k<lim[i+2]; ++k) add(j, k, -(abs(mp[j].x-mp[k].x)+abs(mp[j].y-mp[k].y))); //, cout<<"add "<<j<<' '<<k<<' '<<-(abs(mp[j].x-mp[k].x)+abs(mp[j].y-mp[k].y))<<endl;
}
}
spfa(ss);
printf("%lld\n", -dis[st]);
}
}
namespace task{
// 0->i 1->-i 2->j 3->-j
int tot, lcnt, pos[4], pos2;
ll maxn[4], dp[N*N], ans;
struct point{int a, i, j; ll b;}p[N*N];
inline bool operator < (point a, point b) {return a.a<b.a;}
struct line{int l, r; inline void build(int l_, int r_) {l=l_; r=r_;}}lin[N*N];
void solve() {
memset(maxn, 128, sizeof(maxn));
tot=0; for (int i=1; i<=n; ++i) for (int j=1; j<=m; ++j) p[++tot].a=read(), p[tot].i=i+j, p[tot].j=i-j;
tot=0; for (int i=1; i<=n; ++i) for (int j=1; j<=m; ++j) p[++tot].b=read();
sort(p+1, p+tot+1);
for (pos2=1; !p[pos2].a; ++pos2) ;
for (int i=pos2; i<=tot; ++i) {
lin[++lcnt].l=i;
for (int j=i+1; j<=tot&&(p[j].a==p[j-1].a); ++i,++j) ;
lin[lcnt].r=i;
}
//for (int i=1; i<=lcnt; ++i) cout<<lin[i].l<<","<<lin[i].r<<endl;
//for (int i=1; i<=tot; ++i) cout<<p[i].i<<' '<<p[i].j<<endl;
int i1, j1;
for (int j=lin[1].l; j<=lin[1].r; ++j) {
i1=p[j].i, j1=p[j].j;
dp[j] = p[j].b;
ans = max(ans, dp[j]);
}
for (int j=lin[1].l; j<=lin[1].r; ++j) {
i1=p[j].i, j1=p[j].j;
//cout<<"ij: "<<i1<<' '<<j1<<endl;
maxn[0] = max(maxn[0], dp[j]+i1);
maxn[1] = max(maxn[1], dp[j]-i1);
maxn[2] = max(maxn[2], dp[j]+j1);
maxn[3] = max(maxn[3], dp[j]-j1);
}
//cout<<"ans: "<<ans<<endl;
//cout<<"maxn: "; for (int i=0; i<4; ++i) cout<<maxn[i]<<' '; cout<<endl;
for (int i=2; i<=lcnt; ++i) {
for (int j=lin[i].l; j<=lin[i].r; ++j) {
i1=p[j].i, j1=p[j].j;
dp[j] = p[j].b+max(max(max(maxn[0]-i1, maxn[1]+i1), maxn[2]-j1), maxn[3]+j1);
//cout<<"ans in "<<maxn[0]-i1<<' '<<maxn[1]+i1<<' '<<maxn[2]-j1<<' '<<maxn[3]+j1<<endl;
ans = max(ans, dp[j]);
}
for (int j=lin[i].l; j<=lin[i].r; ++j) {
i1=p[j].i, j1=p[j].j;
maxn[0] = max(maxn[0], dp[j]+i1);
maxn[1] = max(maxn[1], dp[j]-i1);
maxn[2] = max(maxn[2], dp[j]+j1);
maxn[3] = max(maxn[3], dp[j]-j1);
}
//cout<<"ans: "<<ans<<endl;
//cout<<"maxn: "; for (int i=0; i<4; ++i) cout<<maxn[i]<<' '; cout<<endl;
}
printf("%lld\n", ans);
}
}
signed main()
{
#ifdef DEBUG
freopen("1.in", "r", stdin);
#endif
n=read(); m=read();
task::solve();
return 0;
}
题解 biology的更多相关文章
- HDU 5590 ZYB's Biology 水题
ZYB's Biology Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid ...
- HDU1560 DNA sequence(IDA*)题解
DNA sequence Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) To ...
- Biology(湖南集训)
题目大意:n个字符串,m个操作,可以插入字符串,也可以询问某T个字符串的最长后缀 题解:Trie+lca Trie树的插入与查询操作.把字符串反转就相当于求公共前缀. lca的深度就是公共前缀的长度. ...
- 遗传编程(GA,genetic programming)算法初探,以及用遗传编程自动生成符合题解的正则表达式的实践
1. 遗传编程简介 0x1:什么是遗传编程算法,和传统机器学习算法有什么区别 传统上,我们接触的机器学习算法,都是被设计为解决某一个某一类问题的确定性算法.对于这些机器学习算法来说,唯一的灵活性体现在 ...
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
随机推荐
- Go nuts
含义: to behave in a crazy, enthusiastic, or violent way. 发起狂来 详细讲解 go 在这里也不是"去"的意思,而是和 get. ...
- pxe+kickstart部署多个版本的Linux操作系统(下)---实践篇
我们在企业运维环境中,难免会遇到使用多个Linux操作系统的情况,如果每天都需要安装不同版本的Linux系统的话,那么使用Kickstart只能安装一种版本的Linux系统的方法则显得有些捉襟 ...
- XDFZOI 月赛 201905 Sliver
组题人自己组完过后,才发现自己还是太弱了... T1 简单模拟. 按照游戏规则直接模拟显然是不明智的,所以我们可以像石头剪刀布一样,将判断改变为检验. 同时,我们发现,一共只有48种牌,所以我们可以直 ...
- python正则表达式应用
import re ab='''ms: [["", "\u7acb\u5373\u4e0b\u8f7d"], ["", "\u52 ...
- 一、k8s介绍(第一章、k8s高可用集群安装)
作者:北京小远 出处:http://www.cnblogs.com/bj-xy/ 参考课程:Kubernetes全栈架构师(电脑端购买优惠) 文档禁止转载,转载需标明出处,否则保留追究法律责任的权利! ...
- Odoo ORM研究2 - BaseModel中的常用方法分析
今天继续研究ORM的BaseModel,昨天研究了一下所有常用属性的具体用法,那么今天研究一下BaseModel中一些常用的方法,我们学会它们并灵活的应用它们,可以为我们开发解决很多的问题. odoo ...
- 手写Spring框架,是时候撸个AOP与Bean生命周期融合了!
作者:小傅哥 博客:https://bugstack.cn 沉淀.分享.成长,让自己和他人都能有所收获! 一.前言 嘎小子,这片代码水太深你把握不住! 在电视剧<楚汉传奇>中有这么一段刘邦 ...
- 42 张图带你撸完 MySQL 优化
Hey guys,这里是程序员cxuan,欢迎你阅读我最新一期的文章,这篇文章是 MySQL 调优的汇总版,我加了一下日常开发过程中的调优经验,希望对各位小伙伴们有所帮助.下面开始正文. 一般传统互联 ...
- Dubbo的优雅下线原理分析
文/朱季谦 Dubbo如何实现优雅下线? 这个问题困扰了我一阵,既然有优雅下线这种说法,那么,是否有非优雅下线的说法呢? 这,还真有. 可以从linux进程关闭说起,其实,我们经常使用到杀进程的指令背 ...
- 七个对我最重要的职业建议)--转载来自ruanyifeng博客
原文:http://www.ruanyifeng.com/blog/2015/09/career-advice.html 一.不要别人点什么,就做什么 我的第一份工作,只干了8个月,那家公司就倒闭了. ...