作者:耿远昊、Datawhale团队


寄语:Pandas 是基于Numpy的一种工具,是为了解决数据分析任务而创建的,其纳入了大量库和一些标准的数据模型,提供了大量能使我们快速便捷地处理数据的函数和方法。

Datawhale又一开源项目来了!Joyful-Pandas(顾名思义:快乐学习Pandas)由Datawhale成员耿远昊发起,作者结合了三份经典教材的学习经验,历时2个多月时间,结合最新的Pandas版本,编写了这套关于Pandas的开源教程,梳理了Pandas的主线内容。

本项目从Pandas基础、数据分析方法、数据处理类型及动手实践四个模块,对Pandas进行系统性学习。同时,针对内容设计了大量的练习及案例,理论结合实践,巩固数据处理分析能力。

开源初衷

在使用Pandas之前,几乎所有的大型表格处理问题都是用xlrd/xlwt和python循环实现,虽然这已经几乎能完成一切的需求,但其缺点也显而易见,其一就是速度问题,其二就是代码的复用性几乎为0。

曾经也尝试过去零星地学Pandas,但不得不说这个包实在太过庞大,每次使用总觉得盲人摸象,每个函数的参数也很多,学习的路线并不是十分平缓。如果你刚刚手上使用Pandas,那么在碎片的学习过程中,报错是常常发生的事,并且很难修(因为不理解内部的操作),即使修好了下次又不会,令人有些沮丧。

2019年秋季,笔者偶然接触到了Theodore Petrou所著的《Pandas Cookbook》。快速地学习了一遍后,发现之前很多搞不清的概念得到了较好的解答。

之后,笔者又逐步地对着官方的User Guide一字一句查看,通读后建立了大的一些宏观概念。这是一个非常重要的台阶,官方的教程总是会告诉你重点在哪里。

经过了一段时间的思考,结合《Python for Data Analysis》(作者:Pandas之父)、《Pandas Cookbook》和官方的User Guide,按照自己的思路编写了一套关于Pandas的教程,完整梳理Pandas的主线内容。

本着杜绝浅尝辄止的理念,本教程涉及了每个部分的核心概念和函数。最后,希望达到“所写所得即所想”的境界,这大概需要更多的实践,也是笔者努力实现的目标方向。

关于项目的名字,笔者在原先使用Pandas时非常的痛苦(Painful),那现在是时候转变为“Joyful-Pandas”了!

开源内容

Joyful-Pandas共有11个章节,分成了4个模块,涵盖了Pandas基础内容,数据处理过程中常用的数据类型,及在处理过程中涉及到的操作。具体目录详情如下:

模块1 Pandas基础(第1章)

拿到数据后必然先要读取,分析完了数据必然是要保存;读取数据之后,我们面对了怎样的对象(Series? or Dataframe?)是第一重要的课题,因此了解序列和数据框的常规操作及其组件(component)便是必须涉及的内容。

模块2 数据分析方法(第2-5章)

对于一个Series或DataFrame而言,Pandas存在以下四种操作:

索引:如果一个操作使得它的元素信息减少了,那就对应了索引;

分组:数据被分组,从组内提取了关键的信息,使得数据信息被充分地使用;

变形:数据呈现结构或形态上的变化,使得我们更容易地能够地进一步处理数据;

合并:如果一个操作使得原本不属于这个数据框的信息被加入了进来,那往往是涉及到了合并操作。

笔者从数据信息增减的角度出发,将四类操作拆解成了3个板块,分别对应了本项目第2-5章的内容,串联了官方文档关于数据框操作的全部内容,帮助学习者系统梳理。

模块3 数据处理类型(第6-9章)

对序列和数据框这两种容器,Pandas基础对其的结构有了初步理解,而四种操作熟悉了所有相关操作,那么下面就要关心其中的数据类型。

其中涉及来四类特殊的数据类型:

缺失型数据

文本型数据

分类型数据

时间序列型数据

四种数据类型,分别对应了6-9章的内容。同时,在缺失型数据和文本型数据中,详细涉及Pandas1.0版本新的Nullable和string数据类型,这也是从Pandas 0.x升级后具有最大改动的方面。

模块4 动手实践(第10章)

最终,教程1-9章的最后都会加入两个练习题帮助读者巩固本章所学,每一道题都有多个小问,难度逐个上升,与知识点紧密结合。同时在第10章中会添加若干难度不一的综合问题,目前已添加两个经典案例,供大家学习实践。



最后,所有的练习都提供了参考答案,保证了完备性。

写到最后

除了教程主体和练习内容,每一章还加入了问题部分。每个章节设置3-8个问题,问题的内容包含了对知识点的细化认识、对复杂知识点的梳理、对某个函数或Pandas对象设计的思考等,如果在完成练习的基础上认真思考了这些问题,那么相信你对Pandas的掌握程度一定会再上一层楼,最后衷心的希望你能快乐的学习Pandas,体验用Pandas进行数据处理和分析的乐趣。

开源地址

https://github.com/datawhalechina/joyful-pandas

告别痛苦,快乐学习Pandas!开源教程《Joyful-Pandas》发布的更多相关文章

  1. 【干货分享】Node.js 中文学习资料和教程导航

    这篇文章来自 Github 上的一位开发者收集整理的 Node.js 中文学习资料和教程导航.Node 是一个服务器端 JavaScript 解释器,它将改变服务器应该如何工作的概念,它的目标是帮助程 ...

  2. Node.js 中文学习资料和教程导航

    这篇文章来自 Github 上的一位开发者收集整理的 Node.js 中文学习资料和教程导航.Node 是一个服务器端 JavaScript 解释器,它将改变服务器应该如何工作的概念,它的目标是帮助程 ...

  3. [转]Caffe 深度学习框架上手教程

    Caffe 深度学习框架上手教程 机器学习Caffe caffe 原文地址:http://suanfazu.com/t/caffe/281   blink 15年1月 6   Caffe448是一个清 ...

  4. Python 数据处理库 pandas 入门教程

    Python 数据处理库 pandas 入门教程2018/04/17 · 工具与框架 · Pandas, Python 原文出处: 强波的技术博客 pandas是一个Python语言的软件包,在我们使 ...

  5. Caffe 深度学习框架上手教程

    Caffe 深度学习框架上手教程   blink 15年1月   Caffe (CNN, deep learning) 介绍 Caffe -----------Convolution Architec ...

  6. 快速学习 Python 数据分析包 之 pandas

    最近在看时间序列分析的一些东西,中间普遍用到一个叫pandas的包,因此单独拿出时间来进行学习. 参见 pandas 官方文档 http://pandas.pydata.org/pandas-docs ...

  7. 学习Objective-C入门教程(分享)

    原百度文库连接:http://wenku.baidu.com/view/6786064fe518964bcf847c63.html PS:需要原文档的可以留邮箱发送! (我叫雷锋,不要谢我) 学习Ob ...

  8. 程序员用于机器学习编程的Python 数据处理库 pandas 进阶教程

    数据访问 在入门教程中,我们已经使用过访问数据的方法.这里我们再集中看一下. 注:这里的数据访问方法既适用于Series,也适用于DataFrame. **基础方法:[]和. 这是两种最直观的方法,任 ...

  9. 程序员用于机器学习编程的Python 数据处理库 pandas 入门教程

    入门介绍 pandas适合于许多不同类型的数据,包括: · 具有异构类型列的表格数据,例如SQL表格或Excel数据 · 有序和无序(不一定是固定频率)时间序列数据. · 具有行列标签的任意矩阵数据( ...

随机推荐

  1. Codeforce C. Pearls in a Row

    C. Pearls in a Row time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  2. Web前端面试题整合,持续更新【可以收藏】

    饭后闲来无事,把这几年带学生用的一些面试题整合一下,供上!拿走,不客气!应付一般公司的二面基本上是够用了.祝你早日拿到心仪的offer. css相关 1. 万能居中 1.margin: 0 auto; ...

  3. 终于做了一把MySQL调参boy

    本文通过笔者经历的一个真实案例来介绍一个MySQL中的重要参数innodb_buffer_pool_size,希望能给大家带来些许收获,当遇到类似性能问题时可以多一种思考方式. 图片拍摄于大唐不夜城 ...

  4. A ROBUST KERNEL PCA ALGORITHM

    目录 引 主要内容 问题一 问题二 Lu C, Zhang T, Du X, et al. A robust kernel PCA algorithm[C]. international confer ...

  5. 读书笔记markdown模板

    读书笔记 书名 作者 出版社 阅读日期 书籍背景 书摘/ 笔记 批注 总结& 收获 读完每一本书,把书中的知识转化为「自己的智慧」,才是最扎实的收获- 他山之石 摘录相关精彩书评-

  6. 使用PyTorch构建神经网络模型进行手写识别

    使用PyTorch构建神经网络模型进行手写识别 PyTorch是一种基于Torch库的开源机器学习库,应用于计算机视觉和自然语言处理等应用,本章内容将从安装以及通过Torch构建基础的神经网络,计算梯 ...

  7. 过年有燃放烟花爆竹禁令那我们用css写一个仙女棒烟花看看吧

    先是去找了一张简易画的烟花照片,可以看出主要结构为歪曲的线条结构. 方案一: 弯曲的线条第一反应到的就是"圆角边框": width: 200px; height: 200px; b ...

  8. CSS基础 结构伪类选择器 last-child、first-child和nth-of-type的使用方法

    一.通过伪类选择器查找单个标签元素html结构 <div> <a herf='#'>导航1</a> <a herf='#'>导航2</a> ...

  9. 02.python线性数据结构

    内建常用数据类型 分类 数值型 int.float.complex.bool 序列sequence 字符串str.字节序列bytes.bytearray 列表list.元组tuple 键值对 集合se ...

  10. java 多态 总结

    1.前言 引用教科书解释: 多态是同一个行为具有多个不同表现形式或形态的能力. 多态就是同一个接口,使用不同的实例而执行不同操作. 通俗来说: 总结:多态的抽象类与接口有点相似: 父类不需要具体实现方 ...