kNN(k近邻)算法代码实现
目标:预测未知数据(或测试数据)X的分类y
批量kNN算法
1.输入一个待预测的X(一维或多维)给训练数据集,计算出训练集X_train中的每一个样本与其的距离
2.找到前k个距离该数据最近的样本-->所属的分类y_train
3.将前k近的样本进行统计,哪个分类多,则我们将x分类为哪个分类
# 准备阶段: import numpy as np
# import matplotlib.pyplot as plt raw_data_X = [[3.393533211, 2.331273381],
[3.110073483, 1.781539638],
[1.343808831, 3.368360954],
[3.582294042, 4.679179110],
[2.280362439, 2.866990263],
[7.423436942, 4.696522875],
[5.745051997, 3.533989803],
[9.172168622, 2.511101045],
[7.792783481, 3.424088941],
[7.939820817, 0.791637231]
]
raw_data_y = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] X_train = np.array(raw_data_X)
y_train = np.array(raw_data_y) x = np.array([8.093607318, 3.365731514])
核心代码:
目标:预测未知数据(或测试数据)X的分类y
批量kNN算法
1.输入一个待预测的X(一维或多维)给训练数据集,计算出训练集X_train中的每一个样本与其的距离
2.找到前k个距离该数据最近的样本-->所属的分类y_train
3.将前k近的样本进行统计,哪个分类多,则我们将x分类为哪个分类 from math import sqrt
from collections import Counter # 已知X_train,y_train
# 预测x的分类
def predict(x, k=5):
# 计算训练集每个样本与x的距离
distances = [sqrt(np.sum((x-x_train)**2)) for x_train in X_train] # 这里用了numpy的fancy方法,np.sum((x-x_train)**2)
# 获得距离对应的索引,可以通过这些索引找到其所属分类y_train
nearest = np.argsort(distances)
# 得到前k近的分类y
topK_y = [y_train[neighbor] for neighbor in nearest[:k]]
# 投票的方式,得到一个字典,key是分类,value数个数
votes = Counter(topK_y)
# 取出得票第一名的分类
return votes.most_common(1)[0][0] # 得到y_predict predict(x, k=6)
面向对象的方式,模仿sklearn中的方法实现kNN算法:
import numpy as np
from math import sqrt
from collections import Counter class kNN_classify:
def __init__(self, n_neighbor=5):
self.k = n_neighbor
self._X_train = None
self._y_train = None def fit(self, X_train, y_train):
self._X_train = X_train
self._y_train = y_train
return self def predict(self, X):
'''接收多维数据,返回y_predict也是多维的'''
y_predict = [self._predict(x) for x in X]
# return y_predict
return np.array(y_predict) # 返回array的格式 def _predict(self, x):
'''接收一个待预测的x,返回y_predict'''
distances = [sqrt(np.sum((x-x_train)**2)) for x_train in self._X_train]
nearest = np.argsort(distances)
topK_y = [self._y_train[neighbor] for neighbor in nearest[:self.k]]
votes = Counter(topK_y)
return votes.most_common(1)[0][0] def __repr__(self):
return 'kNN_clf(k=%d)' % self.k
kNN(k近邻)算法代码实现的更多相关文章
- 基本分类方法——KNN(K近邻)算法
在这篇文章 http://www.cnblogs.com/charlesblc/p/6193867.html 讲SVM的过程中,提到了KNN算法.有点熟悉,上网一查,居然就是K近邻算法,机器学习的入门 ...
- 第四十六篇 入门机器学习——kNN - k近邻算法(k-Nearest Neighbors)
No.1. k-近邻算法的特点 No.2. 准备工作,导入类库,准备测试数据 No.3. 构建训练集 No.4. 简单查看一下训练数据集大概是什么样子,借助散点图 No.5. kNN算法的目的是,假如 ...
- KNN K~近邻算法笔记
K~近邻算法是最简单的机器学习算法.工作原理就是:将新数据的每一个特征与样本集中数据相应的特征进行比較.然后算法提取样本集中特征最相似的数据的分类标签.一般来说.仅仅提取样本数据集中前K个最相似的数据 ...
- KNN (K近邻算法) - 识别手写数字
KNN项目实战——手写数字识别 1. 介绍 k近邻法(k-nearest neighbor, k-NN)是1967年由Cover T和Hart P提出的一种基本分类与回归方法.它的工作原理是:存在一个 ...
- 机器学习——KNN算法(k近邻算法)
一 KNN算法 1. KNN算法简介 KNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分 ...
- 机器学习:k-NN算法(也叫k近邻算法)
一.kNN算法基础 # kNN:k-Nearest Neighboors # 多用于解决分裂问题 1)特点: 是机器学习中唯一一个不需要训练过程的算法,可以别认为是没有模型的算法,也可以认为训练数据集 ...
- 数据挖掘算法(一)--K近邻算法 (KNN)
数据挖掘算法学习笔记汇总 数据挖掘算法(一)–K近邻算法 (KNN) 数据挖掘算法(二)–决策树 数据挖掘算法(三)–logistic回归 算法简介 KNN算法的训练样本是多维特征空间向量,其中每个训 ...
- 《机实战》第2章 K近邻算法实战(KNN)
1.准备:使用Python导入数据 1.创建kNN.py文件,并在其中增加下面的代码: from numpy import * #导入科学计算包 import operator #运算符模块,k近邻算 ...
- 机器学习之K近邻算法(KNN)
机器学习之K近邻算法(KNN) 标签: python 算法 KNN 机械学习 苛求真理的欲望让我想要了解算法的本质,于是我开始了机械学习的算法之旅 from numpy import * import ...
随机推荐
- linux文件编辑器快捷方式
一:文件编辑器快捷方式 7.光标快速移动快捷方式 ①. 快速切换光标到底行 shift + G ②. 快速切换光标到首行 gg ③. 快速跳转到行首 0 ④. 快速跳转到行尾 shift + $ ⑤. ...
- SpringBoot使用异步线程池实现生产环境批量数据推送
前言 SpringBoot使用异步线程池: 1.编写线程池配置类,自定义一个线程池: 2.定义一个异步服务: 3.使用@Async注解指向定义的线程池: 这里以我工作中使用过的一个案例来做描述,我所在 ...
- Fiddler初学笔记
Fiddler简介 Fiddller官网: www.fiddler2.com Fiddler是客户端与服务器端的http代理,是目前最常用的http抓包工具之一. Fiddler能够监听客户端和服务器 ...
- 资本主义反抗指南精要(v0.1)
(1)充分预估工作时间,比如一小时的开发任务,你可以加上技术调研,API/数据库设计,单元测试,联调,集成测试等等,拖到一天,同理一天的任务可以拖到一星期. (2)简历上尽一切手段来美化,最好能包装成 ...
- jdk、jre、javase、javaee、javame的区别
Jdk定义 JAVA的开发工具包,包含jre,可以进行编译和运行Java程序. Jre定义 JAVA的运行环境,如果不需要进行编译程序,则可只安装jre. Javase定义 标准版Java SE(Ja ...
- JDK停止工作
问题:在服务器上运行程序,有时会出现JDK已停止工作,如图: 解决:在网上查找了很多资料,主要有以下几点 1.程序冲突,回想近期是否新安装了程序,将该程序进行关闭之后,再运行程序 2.异常未处理,即代 ...
- navicat连接mysql报错1251解决方案
感谢原文作者:XDMFC 原文链接:https://blog.csdn.net/xdmfc/article/details/80263215 问题描述 今天下了个 MySQL8.0,发现Navicat ...
- ArrayList和LinkList的区别
底层实现区别 ArrayList 底层实现就是数组,且ArrayList实现了RandomAccess,表示它能快速随机访问存储的元素,通过下标 index 访问,只是我们需要用 get() 方法的形 ...
- axios取消接口请求
axios取消请求 这里就是分析一下接口请求需要被取消时的一些操作 因为我是用vue写的项目,所以标配用的是axios,怎么在axios中取消已经发送的请求呢? 1.在这之前我们还是先介绍一下原生js ...
- @synthesize基本概念
1.什么是@synthesize @synthesize是编译器的指令 什么是编译器的指令 ? 编译器指令就是用来告诉编译器要做什么! @synthesize会让编译器做什么呢? @synthesiz ...