数学图形之Kuen Surface
Kuen Surface应该又是一个以数学家名字命名的曲面.
本文将展示几种Kuen Surface的生成算法和切图,其中有的是标准的,有的只是相似.使用自己定义语法的脚本代码生成数学图形.相关软件参见:数学图形可视化工具,该软件免费开源.QQ交流群: 367752815
公式1
#http://jalape.no/math/kuentxt vertices = D1: D2: u = from (-4.5) to (4.5) D1
v = from (PI*0.01) to (PI*0.99) D2 x=*(cos(u)+u*sin(u))*sin(v)/(+u*u*sin(v)*sin(v))
z=*(sin(u)-u*cos(u))*sin(v)/(+u*u*sin(v)*sin(v))
y=log(tan(v/))+*cos(v)/(+u*u*sin(v)*sin(v))
公式2
.
#http://www.mathcurve.com/surfaces/kuen/kuen.shtml vertices = D1: D2: u = from (-4.5) to (4.5) D1
v = from (PI*0.01) to (PI*0.99) D2 x=*(cos(u)+u*sin(u))*sin(v)/(+u*u*sin(v))
z=*(sin(u)-u*cos(u))*sin(v)/(+u*u*sin(v))
y=ln(tan(v/))+*cos(v)/(+u*u*sin(v))
公式3
.
#http://www.mathcurve.com/surfaces/kuen/kuen.shtml vertices = D1: D2: u = from (-4.5) to (4.5) D1
v = from (-PI*1.5) to (PI*1.5) D2 t = u*u+ch(v)*ch(v) x=*(cos(u)+u*sin(u))*ch(v)/t
z=*(sin(u)-u*cos(u))*ch(v)/t
y=v - sh(*v)/t
公式4
![]() |
![]() |
![]() |
(1)
|
![]() |
![]() |
![]() |
(2)
|
![]() |
![]() |
![]() |
(3)
|
![]() |
![]() |
![]() |
(4)
|
![]() |
![]() |
![]() |
#http://mathworld.wolfram.com/KuenSurface.html vertices = D1: D2: u = from (-PI*1.6) to (PI*1.6) D1
v = from (PI*0.01) to (PI*0.99) D2 a = sin(u)
b = cos(u)
c = sin(v)
d = cos(v) t = + u*u*c*c x = *(b + u*a)*c/t
z = *(a + u*b)*c/t
y = ln[tan(v/)] + *d/t y = limit(y, -, )
数学图形之Kuen Surface的更多相关文章
- 数学图形之Breather surface
这是一种挺漂亮的曲面图形,可惜没有找到太多的相关解释. In differential equations, a breather surface is a mathematical surface ...
- 数学图形之Boy surface
这是一个姓Boy的人发现的,所以取名为Boy surface.该图形与罗马图形有点相似,都是三分的图形.它甚至可以说是由罗马曲面变化而成的. 本文将展示几种Boy曲面的生成算法和切图,使用自己定义语法 ...
- 数学图形之SineSurface与粽子曲面
SineSurface直译为正弦曲面.这有可能和你想象的正弦曲线不一样.如果把正弦曲线绕Y轴旋转,得到的该是正弦波曲面.这个曲面与上一节中的罗马曲面有些相似,那个是被捏过的正四面体,这个则是个被捏过正 ...
- 数学图形之罗马曲面(RomanSurface)
罗马曲面,像是一个被捏扁的正四面体. 本文将展示罗马曲面的生成算法和切图,使用自己定义语法的脚本代码生成数学图形.相关软件参见:数学图形可视化工具,该软件免费开源.QQ交流群: 367752815 维 ...
- 数学图形之克莱因瓶(klein bottle)
克莱因瓶是一种内外两面在同一个曲面上的图形. 在数学领域中,克莱因瓶(德语:Kleinsche Flasche)是指一种无定向性的平面,比如二维平面,就没有“内部”和“外部”之分.克莱因瓶最初的概念提 ...
- WHY数学图形可视化工具(开源)
WHY数学图形可视化工具 软件下载地址:http://files.cnblogs.com/WhyEngine/WhyMathGraph.zip 源码下载地址: http://pan.baidu.com ...
- 数学图形(1.49)Nephroid曲线
昨天IPhone6在国内发售了,我就顺手发布个关于肾的图形.Nephroid中文意思是肾形的.但是这种曲线它看上去却不像个肾,当你看到它时,你觉得它像什么就是什么吧. The name nephroi ...
- 数学图形(1.48)Cranioid curve头颅线
这是一种形似乎头颅的曲线.这种曲线让我想起读研的时候,搞的医学图像三维可视化.那时的原始数据为脑部CT图像.而三维重建中有一种方式是面绘制,是将每一幅CT的颅骨轮廓提取出来,然后一层层地罗列在一起,生 ...
- 数学图形之贝塞尔(Bézier)曲面
前面章节中讲了贝塞尔(Bézier)曲线,而贝塞尔曲面是对其多一个维度的扩展.其公式依然是曲线的公式: . 而之所以由曲线变成曲面,是将顶点横向连了再纵向连. 很多计算机图形学的教程都会有贝塞尔曲面的 ...
随机推荐
- Bootstrap入门六:表单
表单主要包含表单域.输入框.下拉框.单选框.多选框和按钮等控件. 1.基本实例 单独的表单控件会被自动赋予一些全局样式.所有设置了 .form-control 类的 <input>.< ...
- Spring Boot 结合 Redis 缓存
Redis官网: 中:http://www.redis.cn/ 外:https://redis.io/ redis下载和安装 Redis官方并没有提供Redis的Windows版本,这里使用微软提供的 ...
- zoj-1610线段树刷题
title: zoj-1610线段树刷题 date: 2018-10-16 16:49:47 tags: acm 刷题 categories: ACM-线段树 概述 这道题是一道简单的线段树区间染色问 ...
- (三)宏 __cplusplus C/C++混合编程
前面一些篇目的内容作为一个在校生,很少用到,可能工作的人会见得多一点,但是第一次整体性的学习还是不希望有落下的东西,虽然不常用但至少要有个印象 那么就进入第三篇<宏 __cplusplus> ...
- 同步VDP时间
使用yast 进入蓝屏界面,修改system—date and time,取消hardware clock set to utc,时区设置为上海或者北京,然后sntp -r 时间服务器地址 敲击syn ...
- 数据库中drop、delete与truncate的区别
数据库中drop.delete与truncate的区别 drop直接删掉表: truncate删除表中数据,再插入时自增长id又从1开始 :delete删除表中数据,可以加where字句. (1) D ...
- 【BZOJ】4985: 评分【DP】
4985: 评分 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 148 Solved: 75[Submit][Status][Discuss] Des ...
- OpenGL 模型视图投影矩阵 仿射矩阵
矩阵基础知识 要对矩阵进行运算,必须先要了解矩阵的计算公式,这个知识的内容涉及到了线性代数. 我们知道在Cocos2dx中,有关于平移,旋转,缩放等等操作,都必须要进行矩阵的乘法. 只需要一张图就能理 ...
- Android Studio2.3.3卡在Building 'xxx' Gradle project info的解决方法
Android Studio版本:V2.3.3 操作系统环境:Ubuntu14.04 64bit 新安装好Android Studio后,在创建新的项目时或者在导入他人的项目代码时,Android ...
- Oracle sql语句中(+)作用
select * from operator_info o, group_info g where o.group_id = g.group_id(+); 理解: + 表示补充,即哪个表有加号 ...