Qin Shi Huang's National Road System

                                                                  Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768
K (Java/Others)

                                                                                             Total Submission(s): 7672    Accepted Submission(s): 2693

Problem Description
During the Warring States Period of ancient China(476 BC to 221 BC), there were seven kingdoms in China ---- they were Qi, Chu, Yan, Han, Zhao, Wei and Qin. Ying Zheng was the king of the kingdom Qin. Through 9 years of wars, he finally conquered all six other
kingdoms and became the first emperor of a unified China in 221 BC. That was Qin dynasty ---- the first imperial dynasty of China(not to be confused with the Qing Dynasty, the last dynasty of China). So Ying Zheng named himself "Qin Shi Huang" because "Shi
Huang" means "the first emperor" in Chinese.




Qin Shi Huang undertook gigantic projects, including the first version of the Great Wall of China, the now famous city-sized mausoleum guarded by a life-sized Terracotta Army, and a massive national road system. There is a story about the road system:

There were n cities in China and Qin Shi Huang wanted them all be connected by n-1 roads, in order that he could go to every city from the capital city Xianyang.

Although Qin Shi Huang was a tyrant, he wanted the total length of all roads to be minimum,so that the road system may not cost too many people's life. A daoshi (some kind of monk) named Xu Fu told Qin Shi Huang that he could build a road by magic and that
magic road would cost no money and no labor. But Xu Fu could only build ONE magic road for Qin Shi Huang. So Qin Shi Huang had to decide where to build the magic road. Qin Shi Huang wanted the total length of all none magic roads to be as small as possible,
but Xu Fu wanted the magic road to benefit as many people as possible ---- So Qin Shi Huang decided that the value of A/B (the ratio of A to B) must be the maximum, which A is the total population of the two cites connected by the magic road, and B is the
total length of none magic roads.

Would you help Qin Shi Huang?

A city can be considered as a point, and a road can be considered as a line segment connecting two points.
 
Input
The first line contains an integer t meaning that there are t test cases(t <= 10).

For each test case:

The first line is an integer n meaning that there are n cities(2 < n <= 1000).

Then n lines follow. Each line contains three integers X, Y and P ( 0 <= X, Y <= 1000, 0 < P < 100000). (X, Y) is the coordinate of a city and P is the population of that city.

It is guaranteed that each city has a distinct location.
 
Output
For each test case, print a line indicating the above mentioned maximum ratio A/B. The result should be rounded to 2 digits after decimal point.
 
Sample Input
2
4
1 1 20
1 2 30
200 2 80
200 1 100
3
1 1 20
1 2 30
2 2 40
 
Sample Output
65.00
70.00
 
Source
 
Recommend
lcy


————————————————————————————————————
题目意思:秦始皇统一中国之后要在全国修公路连接各个城市,抠门皇帝只想修成最小生成树(距离最小,不考虑人力),一个道士说自己可以不花人力物力修一条路,经过两方妥协,选择max(两个城市人口/(生成树长度-这条路的长度))的路让他变,求这个比值最大值。
思路:先找出最小生成树,在枚举删除树上每一条边,删除边后会形成2个集合,找出两个集合的最大值,算出答案取最大值

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <string>
#include <set>
#include <map>
#include <queue> using namespace std;
#define inf 0x3f3f3f3f
int n;
struct node
{
int u,v;
double w;
} p[1000006],mst[1006];
int pre[1006],cnt;
int a[1006]; bool cmp(node a,node b)
{
return a.w<b.w;
} void init()
{
for(int i=0; i<1005; i++)
pre[i]=i;
}
int fin(int x)
{
return pre[x]==x?x:pre[x]=fin(pre[x]);
} double kruskal()
{
init();
double cost=0;
int ans=0;
for(int i=0; i<cnt; i++)
{
int a=fin(p[i].u);
int b=fin(p[i].v);
if(a!=b)
{
pre[a]=b;
cost+=p[i].w;
mst[ans].u=p[i].u,mst[ans].v=p[i].v,mst[ans].w=p[i].w;
ans++;
}
if(ans==n-1)
break;
}
return cost;
} int main()
{ int x[1005],y[1005],T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i=0; i<n; i++)
scanf("%d%d%d",&x[i],&y[i],&a[i]);
cnt=0;
memset(p,0,sizeof p);
memset(mst,0,sizeof mst);
for(int i=0; i<n; i++)
for(int j=i+1; j<n; j++)
{
p[cnt].u=i,p[cnt].v=j,p[cnt++].w=sqrt((double)((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j])));
}
sort(p,p+cnt,cmp);
double mincost=kruskal();
double ans=-1;
for(int i=0; i<n-1; i++)
{
init();
for(int j=0; j<n-1; j++)
{
if(i==j)
continue;
int aa=fin(mst[j].u);
int bb=fin(mst[j].v);
if(aa!=bb)
{
pre[aa]=bb;
}
}
int xx=fin(mst[i].u);
int yy=fin(mst[i].v);
int x1=-1,x2=-1;
mincost-=mst[i].w;
for(int j=0; j<n; j++)
if(fin(j)!=xx)
x1=max(x1,a[j]);
for(int j=0; j<n; j++)
if(fin(j)!=yy)
x2=max(x2,a[j]);
ans=max(ans,(x1+x2)*1.0/mincost);
mincost+=mst[i].w;
}
printf("%.2f\n",ans);
}
return 0;
}



HDU4081 Qin Shi Huang's National Road System 2017-05-10 23:16 41人阅读 评论(0) 收藏的更多相关文章

  1. HDU4081 Qin Shi Huang's National Road System —— 次小生成树变形

    题目链接:https://vjudge.net/problem/HDU-4081 Qin Shi Huang's National Road System Time Limit: 2000/1000 ...

  2. HDU4081:Qin Shi Huang's National Road System (任意两点间的最小瓶颈路)

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  3. hdu-4081 Qin Shi Huang's National Road System(最小生成树+bfs)

    题目链接: Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: ...

  4. HDU4081 Qin Shi Huang's National Road System(次小生成树)

    枚举作为magic road的边,然后求出A/B. A/B得在大概O(1)的时间复杂度求出,关键是B,B是包含magic road的最小生成树. 这么求得: 先在原图求MST,边总和记为s,顺便求出M ...

  5. hdu4081 Qin Shi Huang's National Road System 次小生成树

    先发发牢骚:图论500题上说这题是最小生成树+DFS,网上搜题解也有人这么做.但是其实就是次小生成树.次小生成树完全当模版题.其中有一个小细节没注意,导致我几个小时一直在找错.有了模版要会用模版,然后 ...

  6. HDU4081 Qin Shi Huang's National Road System

    先求最小生成树 再遍历每一对顶点,如果该顶点之间的边属于最小生成树,则剪掉这对顶点在最小生成树里的最长路径 否则直接剪掉连接这对顶点的边~ 用prim算法求最小生成树最长路径的模板~ #include ...

  7. hdu 4081 Qin Shi Huang's National Road System (次小生成树)

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  8. UValive 5713 Qin Shi Huang's National Road System

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  9. hdu 4081 Qin Shi Huang's National Road System (次小生成树的变形)

    题目:Qin Shi Huang's National Road System Qin Shi Huang's National Road System Time Limit: 2000/1000 M ...

随机推荐

  1. Haskell语言学习笔记(36)Data.List.Zipper

    ListZipper 模块 $ cabal install ListZipper Installed ListZipper-1.2.0.2 Prelude> :m +Data.List.Zipp ...

  2. Mac和iOS开发资源汇总—更新于2013-10-14

    小引本文主要汇集一些苹果开发的资源,会经常更新,建议大家把这篇文章单独收藏(在浏览器中按command+D).今天(2013年10月14日)收录了answer哥(黄爱武)的博客,欢迎大家围观! 今天( ...

  3. 处理【由于 Web 服务器上的“ISAPI 和 CGI 限制”列表设置,无法提供您请求的页面】

    处理[由于 Web 服务器上的“ISAPI 和 CGI 限制”列表设置,无法提供您请求的页面] 详细错误:HTTP 错误 404.2 - Not Found. 由于 Web 服务器上的“ISAPI 和 ...

  4. 吴裕雄 实战PYTHON编程(10)

    import cv2 cv2.namedWindow("frame")cap = cv2.VideoCapture(0)while(cap.isOpened()): ret, im ...

  5. Spring Boot logback

    前言 今天来介绍下spring Boot如何配置日志logback,我刚学习的时候,是带着下面几个问题来查资料的,你呢 如何引入日志? 日志输出格式以及输出方式如何配置? 代码中如何使用? 正文 Sp ...

  6. mysql开通tcp远程连接

    1.登陆mysql: mysql -u root mysql 2.运行下面命令 UPDATE `mysql`.`user` SET `Host` = '%' WHERE `user`.`Host` = ...

  7. Web标准:七、横向导航菜单

    Web标准:七.横向导航菜单 知识点: 1.横向列表菜单 2.用图片美化的横向导航 3.css Sprites   1)横向列表菜单 可以在第四节课的基础上来实现横向导航菜单,只要给li一个float ...

  8. SpringMVC源码总结(一)HandlerMapping和HandlerAdapter入门

    SpringMVC在使用过程中,大多是使用注解,对它的实现接口之类的关系理解变得模糊, 通过对XML配置的理解,可以理清各个类的关系,譬如控制器类要实现Controller接口. 接触SpringMV ...

  9. java并发中的锁

    java中的锁,最基本的是Lock接口. Lock接口中的方法,主要是: lock(): 获取锁,lock()方法会对Lock实例对象进行加锁,因此所有对该对象调用lock()方法的线程都会被阻塞,直 ...

  10. Plants vs. Zombies(二分好题+思维)

    Plants vs. Zombies http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5819 BaoBao and DreamG ...