HDU4081 Qin Shi Huang's National Road System 2017-05-10 23:16 41人阅读 评论(0) 收藏
Qin Shi Huang's National Road System
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768
K (Java/Others)
Total Submission(s): 7672 Accepted Submission(s): 2693
kingdoms and became the first emperor of a unified China in 221 BC. That was Qin dynasty ---- the first imperial dynasty of China(not to be confused with the Qing Dynasty, the last dynasty of China). So Ying Zheng named himself "Qin Shi Huang" because "Shi
Huang" means "the first emperor" in Chinese.

Qin Shi Huang undertook gigantic projects, including the first version of the Great Wall of China, the now famous city-sized mausoleum guarded by a life-sized Terracotta Army, and a massive national road system. There is a story about the road system:
There were n cities in China and Qin Shi Huang wanted them all be connected by n-1 roads, in order that he could go to every city from the capital city Xianyang.
Although Qin Shi Huang was a tyrant, he wanted the total length of all roads to be minimum,so that the road system may not cost too many people's life. A daoshi (some kind of monk) named Xu Fu told Qin Shi Huang that he could build a road by magic and that
magic road would cost no money and no labor. But Xu Fu could only build ONE magic road for Qin Shi Huang. So Qin Shi Huang had to decide where to build the magic road. Qin Shi Huang wanted the total length of all none magic roads to be as small as possible,
but Xu Fu wanted the magic road to benefit as many people as possible ---- So Qin Shi Huang decided that the value of A/B (the ratio of A to B) must be the maximum, which A is the total population of the two cites connected by the magic road, and B is the
total length of none magic roads.
Would you help Qin Shi Huang?
A city can be considered as a point, and a road can be considered as a line segment connecting two points.
For each test case:
The first line is an integer n meaning that there are n cities(2 < n <= 1000).
Then n lines follow. Each line contains three integers X, Y and P ( 0 <= X, Y <= 1000, 0 < P < 100000). (X, Y) is the coordinate of a city and P is the population of that city.
It is guaranteed that each city has a distinct location.
2
4
1 1 20
1 2 30
200 2 80
200 1 100
3
1 1 20
1 2 30
2 2 40
65.00
70.00
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <string>
#include <set>
#include <map>
#include <queue> using namespace std;
#define inf 0x3f3f3f3f
int n;
struct node
{
int u,v;
double w;
} p[1000006],mst[1006];
int pre[1006],cnt;
int a[1006]; bool cmp(node a,node b)
{
return a.w<b.w;
} void init()
{
for(int i=0; i<1005; i++)
pre[i]=i;
}
int fin(int x)
{
return pre[x]==x?x:pre[x]=fin(pre[x]);
} double kruskal()
{
init();
double cost=0;
int ans=0;
for(int i=0; i<cnt; i++)
{
int a=fin(p[i].u);
int b=fin(p[i].v);
if(a!=b)
{
pre[a]=b;
cost+=p[i].w;
mst[ans].u=p[i].u,mst[ans].v=p[i].v,mst[ans].w=p[i].w;
ans++;
}
if(ans==n-1)
break;
}
return cost;
} int main()
{ int x[1005],y[1005],T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i=0; i<n; i++)
scanf("%d%d%d",&x[i],&y[i],&a[i]);
cnt=0;
memset(p,0,sizeof p);
memset(mst,0,sizeof mst);
for(int i=0; i<n; i++)
for(int j=i+1; j<n; j++)
{
p[cnt].u=i,p[cnt].v=j,p[cnt++].w=sqrt((double)((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j])));
}
sort(p,p+cnt,cmp);
double mincost=kruskal();
double ans=-1;
for(int i=0; i<n-1; i++)
{
init();
for(int j=0; j<n-1; j++)
{
if(i==j)
continue;
int aa=fin(mst[j].u);
int bb=fin(mst[j].v);
if(aa!=bb)
{
pre[aa]=bb;
}
}
int xx=fin(mst[i].u);
int yy=fin(mst[i].v);
int x1=-1,x2=-1;
mincost-=mst[i].w;
for(int j=0; j<n; j++)
if(fin(j)!=xx)
x1=max(x1,a[j]);
for(int j=0; j<n; j++)
if(fin(j)!=yy)
x2=max(x2,a[j]);
ans=max(ans,(x1+x2)*1.0/mincost);
mincost+=mst[i].w;
}
printf("%.2f\n",ans);
}
return 0;
}
HDU4081 Qin Shi Huang's National Road System 2017-05-10 23:16 41人阅读 评论(0) 收藏的更多相关文章
- HDU4081 Qin Shi Huang's National Road System —— 次小生成树变形
题目链接:https://vjudge.net/problem/HDU-4081 Qin Shi Huang's National Road System Time Limit: 2000/1000 ...
- HDU4081:Qin Shi Huang's National Road System (任意两点间的最小瓶颈路)
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- hdu-4081 Qin Shi Huang's National Road System(最小生成树+bfs)
题目链接: Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...
- HDU4081 Qin Shi Huang's National Road System(次小生成树)
枚举作为magic road的边,然后求出A/B. A/B得在大概O(1)的时间复杂度求出,关键是B,B是包含magic road的最小生成树. 这么求得: 先在原图求MST,边总和记为s,顺便求出M ...
- hdu4081 Qin Shi Huang's National Road System 次小生成树
先发发牢骚:图论500题上说这题是最小生成树+DFS,网上搜题解也有人这么做.但是其实就是次小生成树.次小生成树完全当模版题.其中有一个小细节没注意,导致我几个小时一直在找错.有了模版要会用模版,然后 ...
- HDU4081 Qin Shi Huang's National Road System
先求最小生成树 再遍历每一对顶点,如果该顶点之间的边属于最小生成树,则剪掉这对顶点在最小生成树里的最长路径 否则直接剪掉连接这对顶点的边~ 用prim算法求最小生成树最长路径的模板~ #include ...
- hdu 4081 Qin Shi Huang's National Road System (次小生成树)
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- UValive 5713 Qin Shi Huang's National Road System
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- hdu 4081 Qin Shi Huang's National Road System (次小生成树的变形)
题目:Qin Shi Huang's National Road System Qin Shi Huang's National Road System Time Limit: 2000/1000 M ...
随机推荐
- Haskell语言学习笔记(25)MonadState, State, StateT
MonadState 类型类 class Monad m => MonadState s m | m -> s where get :: m s get = state (\s -> ...
- select top 变量问题
1.拼接查询语句(SQL2000,2005,2008均可) DECLARE @a AS INT SET @a=1 EXEC('SELECT TOP '+@a+' * FROM mtrcLanguage ...
- Resume (Curriculum Vitae)
The resume (Curriculum Vitae) is a selling tool outlining your skills and experience so an employer ...
- 8.String to Integer (atoi) (INT; Overflow)
Implement atoi to convert a string to an integer. Hint: Carefully consider all possible input cases. ...
- discrete
discrete - 必应词典 美[dɪ'skrit]英[dɪ'skriːt] adj.离散的:分离的:各别的 网络不连续的:分立的:离散型
- preset
preset - 必应词典 美[.pri'set]英[.priː'set] v.预置:事先安排:预调:给…预定时间 网络预设:预先装置:预置位
- JAVA 框架 Spring Cache For Redis.
一.概述 缓存(Caching)可以存储经常会用到的信息,这样每次需要的时候,这些信息都是立即可用的. 常用的缓存数据库: Redis 使用内存存储(in-memory)的非关系数据库,字符串.列 ...
- MongoDB 3.0 Release Notes
MongoDB 3.0支持WiredTiger存储引擎,提供可插拔存储引擎API,新增SCRAM-SHA-1认证机制,改进explain功能. 可插拔存储引擎API 允许第三方为MongoDB开发存储 ...
- 移动端input验证只允许有数字 在safari浏览器一直不成功解决
<input class="lineHeight-30" type="text" onkeyup="value=value.replace(/[ ...
- Thread.currentThread().getName() ,对象实例.getName() 和 this.getName()区别
原文链接:http://www.cnblogs.com/signheart/p/922dcf75dd5fe6b418d4475af89c4664.html 使用Thread.currentThread ...