keras 自适应分配显存 & 清理不用的变量释放 GPU 显存

Intro

Are you running out of GPU memory when using keras or tensorflow deep learning models, but only some of the time?

Are you curious about exactly how much GPU memory your tensorflow model uses during training?

Are you wondering if you can run two or more keras models on your GPU at the same time?

Background

By default, tensorflow pre-allocates nearly all of the available GPU memory, which is bad for a variety of use cases, especially production and memory profiling.

When keras uses tensorflow for its back-end, it inherits this behavior.

Setting tensorflow GPU memory options

For new models

Thankfully, tensorflow allows you to change how it allocates GPU memory, and to set a limit on how much GPU memory it is allowed to allocate.

Let’s set GPU options on keras‘s example Sequence classification with LSTM network

 
## keras example imports
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.layers import Embedding
from keras.layers import LSTM ## extra imports to set GPU options
import tensorflow as tf
from keras import backend as k ###################################
# TensorFlow wizardry
config = tf.ConfigProto() # Don't pre-allocate memory; allocate as-needed
config.gpu_options.allow_growth = True # Only allow a total of half the GPU memory to be allocated
#config.gpu_options.per_process_gpu_memory_fraction = 0.5 # Create a session with the above options specified.
k.tensorflow_backend.set_session(tf.Session(config=config))
################################### model = Sequential()
model.add(Embedding(max_features, output_dim=256))
model.add(LSTM(128))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy']) model.fit(x_train, y_train, batch_size=16, epochs=10)
score = model.evaluate(x_test, y_test, batch_size=16)

After the above, when we create the sequence classification model, it won’t use half the GPU memory automatically, but rather will allocate GPU memory as-needed during the calls to model.fit() and model.evaluate().

Additionally, with the per_process_gpu_memory_fraction = 0.5tensorflow will only allocate a total of half the available GPU memory.

If it tries to allocate more than half of the total GPU memory, tensorflow will throw a ResourceExhaustedError, and you’ll get a lengthy stack trace.

If you have a Linux machine and an nvidia card, you can watch nvidia-smi to see how much GPU memory is in use, or can configure a monitoring tool like monitorix to generate graphs for you.

GPU memory usage, as shown in Monitorix for Linux

For a model that you’re loading

We can even set GPU memory management options for a model that’s already created and trained, and that we’re loading from disk for deployment or for further training.

For that, let’s tweak keras‘s load_model example:

 
# keras example imports
from keras.models import load_model ## extra imports to set GPU options
import tensorflow as tf
from keras import backend as k ###################################
# TensorFlow wizardry
config = tf.ConfigProto() # Don't pre-allocate memory; allocate as-needed
config.gpu_options.allow_growth = True # Only allow a total of half the GPU memory to be allocated
config.gpu_options.per_process_gpu_memory_fraction = 0.5 # Create a session with the above options specified.
k.tensorflow_backend.set_session(tf.Session(config=config))
################################### # returns a compiled model
# identical to the previous one
model = load_model('my_model.h5') # TODO: classify all the things

Now, with your loaded model, you can open your favorite GPU monitoring tool and watch how the GPU memory usage changes under different loads.

Conclusion

Good news everyone! That sweet deep learning model you just made doesn’t actually need all that memory it usually claims!

And, now that you can tell tensorflow not to pre-allocate memory, you can get a much better idea of what kind of rig(s) you need in order to deploy your model into production.

Is this how you’re handling GPU memory management issues with tensorflow or keras?

Did I miss a better, cleaner way of handling GPU memory allocation with tensorflow and keras?

Let me know in the comments!

 
 
====================================================================================
 

How to remove stale models from GPU memory

import gc
m = Model(.....)
m.save(tmp_model_name)
del m
K.clear_session()
gc.collect()
m = load_model(tmp_model_name)

参考: https://michaelblogscode.wordpress.com/2017/10/10/reducing-and-profiling-gpu-memory-usage-in-keras-with-tensorflow-backend/

https://github.com/keras-team/keras/issues/5345

Reducing and Profiling GPU Memory Usage in Keras with TensorFlow Backend的更多相关文章

  1. GPU Memory Usage占满而GPU-Util却为0的调试

    最近使用github上的一个开源项目训练基于CNN的翻译模型,使用THEANO_FLAGS='floatX=float32,device=gpu2,lib.cnmem=1' python run_nn ...

  2. Allowing GPU memory growth

    By default, TensorFlow maps nearly all of the GPU memory of all GPUs (subject to CUDA_VISIBLE_DEVICE ...

  3. Redis: Reducing Memory Usage

    High Level Tips for Redis Most of Stream-Framework's users start out with Redis and eventually move ...

  4. Android 性能优化(21)*性能工具之「GPU呈现模式分析」Profiling GPU Rendering Walkthrough:分析View显示是否超标

    Profiling GPU Rendering Walkthrough 1.In this document Prerequisites Profile GPU Rendering $adb shel ...

  5. Memory usage of a Java process java Xms Xmx Xmn

    http://www.oracle.com/technetwork/java/javase/memleaks-137499.html 3.1 Meaning of OutOfMemoryError O ...

  6. Shell script for logging cpu and memory usage of a Linux process

    Shell script for logging cpu and memory usage of a Linux process http://www.unix.com/shell-programmi ...

  7. 5 commands to check memory usage on Linux

    Memory Usage On linux, there are commands for almost everything, because the gui might not be always ...

  8. SHELL:Find Memory Usage In Linux (统计每个程序内存使用情况)

    转载一个shell统计linux系统中每个程序的内存使用情况,因为内存结构非常复杂,不一定100%精确,此shell可以在Ghub上下载. [root@db231 ~]# ./memstat.sh P ...

  9. Why does the memory usage increase when I redeploy a web application?

    That is because your web application has a memory leak. A common issue are "PermGen" memor ...

随机推荐

  1. 【11】JMicro微服务-配置管理

    如非授权,禁止用于商业用途,转载请注明出处作者:mynewworldyyl 往下看前,建议完成前面1到10小节 JMicro目前仅支持基于Zookeeper做配置管理,全部配置信息可以在ZK做增删改查 ...

  2. Swift 基本数据类型与运算符表达式

    // // main.swift // LessonSwift01 // // Created by lanouhn on 16/1/25. // Copyright © 2016年 齐彦坤. All ...

  3. POJ 1083

    #include<iostream> #include<stdio.h> #include<algorithm> #define MAXN 400 using na ...

  4. Window Screen对象

    window.screen 对象包含有关用户屏幕的信息. window.screen对象在编写时可以不使用 window 这个前缀.一些属性: screen.availWidth // 可用的屏幕宽度 ...

  5. zabbix 自动发现 相关

    zabbix自动发现,是zabbix精髓所在. 生产中,一台服务器上可能会存在多个监控实例,比如:A服务器2个,B服务器4个, C服务器1个.单单靠套模板来完成监控,做法那太糟糕了.比如小明有100台 ...

  6. webpack处理url资源的配置

    webpack处理url资源的配置 1.安装 npm i url-loader -D 2.修改webpack.config.js const path = require('path'); // 启用 ...

  7. Exception message: /bin/bash: line 0: fg: no job control

    这个错误是 我本地idea 远程调试hadoop集群出现的 Diagnostics: Exception from container-launch. Container id: container_ ...

  8. 搭建安卓开发环境 hello world andriod

    万事开头能嘛.先要搭建开发环境,主要用到java,会java的同学福音啊. 一 相关下载 1.Jdk.(java的开发环境).  http://www.oracle.com/technetwork/j ...

  9. mongodb-地理坐标存储查询

    mongodb可支持空间地理搜索: 查询器 $geoWithin Selects geometries within a bounding GeoJSON geometry. The 2dsphere ...

  10. 安装Oracle需要调整的linux内核参数

    在安装Oracle的时候需要调整linux的内核参数,但是各参数代表什么含义呢,下面做详细解析. Linux安装文档中给出的最小值: fs.aio-max-nr = 1048576 fs.file-m ...