转载请注明出处:http://www.codelast.com/

对精确的line search(线搜索),有一个重要的定理:

∇f(xk+αkdk)Tdk=0

这个定理表明,当前点在dk方向上移动到的那一点(xk+αkdk)处的梯度,与当前点的搜索方向dk的点积为零。

其中,αk是称之为“步长”的一个实数,它是通过line search算法求出来的。

为什么会有这样的结论?我们来看看。
对每一个line search过程来说,搜索方向dk已经已经是确定的了(在最优化算法中,如何找出一个合适的dk不是line search干的事情)。所以,在一个确定的dk上,要找到一个合适的αk,使得ϕ(α)=f(xk+αdk)这个函数满足f(xk+αkdk)<f(xk),这就是line search的目的。说白了,就是要找到αk使ϕ(α)的函数函数值变小。
文章来源:http://www.codelast.com/
但是,要小到什么程度呢?假设小到有可能的“最小”,即:
ϕ(αk)=f(xk+αkdk)=minα>0f(xk+αdk)=minα>0ϕ(α)
那么,我们称这样的line search为“精确的line search”——你看,这名字好贴切:我们精确地找到了函数值最小的那个点。

既然xk+αkdk是函数值最小的那个点,那么,在该点处的一阶导数(即梯度)为零,所以我们对上式求导(α是自变量,xk和dk为常量):
ϕ′(αk)=[f(xk+αkdk)]′⋅(0+1⋅dk)=[f(xk+αkdk)]′dk=∇f(xk+αkdk)Tdk=0
文章来源:http://www.codelast.com/
这就是我们前面说的定理了。

line search中的重要定理 - 梯度与方向的点积为零的更多相关文章

  1. 重新发现梯度下降法--backtracking line search

    一直以为梯度下降很简单的,结果最近发现我写的一个梯度下降特别慢,后来终于找到原因:step size的选择很关键,有一种叫backtracking line search的梯度下降法就非常高效,该算法 ...

  2. Line Search and Quasi-Newton Methods 线性搜索与拟牛顿法

    Gradient Descent 机器学习中很多模型的参数估计都要用到优化算法,梯度下降是其中最简单也用得最多的优化算法之一.梯度下降(Gradient Descent)[3]也被称之为最快梯度(St ...

  3. Line Search and Quasi-Newton Methods

    Gradient Descent 机器学习中很多模型的参数估计都要用到优化算法,梯度下降是其中最简单也用得最多的优化算法之一.梯度下降(Gradient Descent)[3]也被称之为最快梯度(St ...

  4. 线搜索(line search)方法

    在机器学习中, 通常需要求某个函数的最值(比如最大似然中需要求的似然的最大值). 线搜索(line search)是求得一个函数\(f(x)\)的最值的两种常用迭代方法之一(另外一个是trust re ...

  5. Backtracking line search的理解

    使用梯度下降方法求解凸优化问题的时候,会遇到一个问题,选择什么样的梯度下降步长才合适. 假设优化函数为,若每次梯度下降的步长都固定,则可能出现左图所示的情况,无法收敛.若每次步长都很小,则下降速度非常 ...

  6. 【原创】回溯线搜索 Backtracking line search

    机器学习中很多数值优化算法都会用到线搜索(line search).线搜索的目的是在搜索方向上找到是目标函数\(f(x)\)最小的点.然而,精确找到最小点比较耗时,由于搜索方向本来就是近似,所以用较小 ...

  7. 【分享】IT产业中的三大定理(一) —— 摩尔定理(Moore's Law)

    科技行业流传着很多关于比尔·盖茨的故事,其中一个是他和通用汽车公司老板之间的对话.盖茨说,如果汽车工业能够像计算机领域一样发展,那么今天,买一辆汽车只需要 25 美元,一升汽油能跑四百公里.通用汽车老 ...

  8. 【分享】IT产业中的三大定理(二) —— 安迪&比尔定理 (Andy and Bill's Law)

    摩尔定理给所有的计算机消费者带来一个希望,如果我今天嫌计算机太贵买不起,那么我等十八个月就可以用一半的价钱来买.要真是这样简单的话,计算机的销售量就上不去了.需要买计算机的人会多等几个月,已经有计算机 ...

  9. 如何在search中动态的显示和隐藏tree中的字段

    在tree定义 invisible 来自context <field name="country_id" invisible="context.get('invis ...

随机推荐

  1. STM8S——Universal asynchronous receiver transmitter (UART)

    UART基本介绍: 通用异步收发器UART他的功能非常强大 我们只使用UART的全双工异步通信功能,使用中断接收数据. UART_RX:串行数据输入. UART_TX:串行数据输出. 硬件支持: 连接 ...

  2. redmine on centos

    一 前言 前前后后搭建redmine,花费了很多时间.期间会遇到各种坑,因此总结下自己的方法,分享给各位童鞋. 二 操作系统  centos release 6.9 详细信息如下图:   三 安装步骤 ...

  3. 利用VS2015开发python版本的caffe应用

    打开VS2015,选择“新建项目”->“其它语言”->“python”,VS会提示你安装PTVS(Python Tools for Visual Studio)插件,安装完毕后即可开始py ...

  4. Caffe Blob针对图像数据在内存中的组织方式

    Caffe使用Blob结构在CNN网络中存储.传递数据.对于批量2D图像数据,Blob的维度为 图像数量N × 通道数C × 图像高度H × 图像宽度W 显然,在此种场景下,Blob使用4维坐标定位数 ...

  5. Siki_Unity_3-7_AssetBundle从入门到掌握

    Unity 3-7 AssetBundle从入门到掌握 任务1&2&3:课程介绍 AssetBundle -- 用于资源的更新 为了之后的xLua (Lua热更新的框架)打下基础 任务 ...

  6. Python中remove,pop,del的区别

    先上题:写出最终打印的结果 a = [1, 2, 3, 4] for x in a: a.remove(x) print(a) print("=" * 20) b = [1, 2, ...

  7. Spring Boot 学习目录

    之前一直做.net 的开发,后来发现C# 在生态方面和Java还是差了好多,而且目前有很多.net 方面的技术也是借鉴了Java相关的开发,所以最近准备学习了解一下java 相关的web开发,从中学习 ...

  8. layui数据表格使用(一:基础篇,数据展示、分页组件、表格内嵌表单和图片)

    表格展示神器之一:layui表格 前言:在写后台管理系统中使用最多的就是表格数据展示了,使用表格组件能提高大量的开发效率,目前主流的数据表格组件有bootstrap table.layui table ...

  9. Bitcoin Core P2P网络层

    目录 数据结构 节点发现和节点连接 地址管理 节点发现 节点连接 插口(Sockets)和消息 Socket线程 (net.cpp) 消息线程 ProcessMessages (net_process ...

  10. DebuggerVisualizer时,序列化引出的问题。

    实现如下功能:http://www.cnblogs.com/devil0153/archive/2010/09/01/Visual-Studio-Custom-Debugger.html#288924 ...