Description

给定一棵 \(n\) 个节点的树,点有点权,将树的节点划分成多个集合,满足集合的并集是树的点集,最小化每个集合最大点权之和。

Limitation

\(1~\leq~n~\leq~2~\times~10^5,~1~\leq~M~\leq~10^9\)

其中 \(M\) 表示树的最大点权。

Subtasks:

对于前 \(45\%\) 的数据, \(n~\leq~16\)

另有 \(15\%\) 的数据,保证树的形态是一条链,但是 \(1\) 号节点不一定是根节点

另有 \(15\%\) 的数据,\(n~\leq~2000\)

另有 \(25\%\) 的数据无特殊限制。

Solution

联考里唯一会做的送温暖题。

考虑前 \(45\%\) 可以直接状压

考虑一条链的数据,显然根节点的同一方向的后代不能放到集合中,于是显然需要将两个方向的后代合并。考虑其中一条链的最大权值的点显然应该选择另一侧最大的合并。证明上可以考虑调整法,如果选择另一个点的话对答案的贡献不会更优。

于是将两条链分别排序,最后加上根节点的贡献即可。

考虑将这个结论推广到一般树上也是成立的。证明:对拍了半小时没有挂

那么考虑 \(n~\leq~2000\) 的点,先按照点权排序,然后枚举没有被选进集合的点,暴力在树上将子树和到根节点的链都打上时间戳,然后向后枚举所有的点,如果一个点没有被选择且没有被打上当前时间戳,则将其选入集合,同时暴力染色,打上相同的时间戳。

考虑这样做的时间复杂度:枚举每个点和集合中的其他点是 \(O(n^2)\) 的,对于每个点,会在树上 \(O(n)\) 暴力染色一次,查询是否染色是 \(O(1)\) 的,由于上述两个操作的次数多都是 \(O(n)\) 的,于是染色和查询的总复杂度是 \(O(n^2)\) 的,加上枚举的复杂度,总复杂度 \(O(n^2)\)。

考虑剩下的部分,发现选出的集合个数显然是 \(O(maxdepth)\) 的,同时每个集合中非最大权值是无需维护的,合并两个子树可以使用同样的方法贪心。于是对每一棵子树开一个 std::priority_queue,维护该子树内选择的每个集合的最大值。考虑到发现每个对树进行长链剖分,将非长链的元素合并到长链上,由于每合并一次会有一个数被删掉,会删 \(O(n)\) 个数,于是总复杂度 \(O(n \log n)\)。

注意长链剖分在向上合并长链信息的时候只能交换两个节点的头指针,如果暴力枚举子节点的元素插入父节点的话复杂度是不对的,例如:考虑一条链的情况,会被卡到 \(O(n^2)\)。

Code

#include <cstdio>
#include <queue>
#include <vector>
#ifdef ONLINE_JUDGE
#define freopen(a, b, c)
#endif typedef long long int ll; namespace IPT {
const int L = 1000000;
char buf[L], *front=buf, *end=buf;
char GetChar() {
if (front == end) {
end = buf + fread(front = buf, 1, L, stdin);
if (front == end) return -1;
}
return *(front++);
}
} template <typename T>
inline void qr(T &x) {
char ch = IPT::GetChar(), lst = ' ';
while ((ch > '9') || (ch < '0')) lst = ch, ch=IPT::GetChar();
while ((ch >= '0') && (ch <= '9')) x = (x << 1) + (x << 3) + (ch ^ 48), ch = IPT::GetChar();
if (lst == '-') x = -x;
} namespace OPT {
char buf[120];
} template <typename T>
inline void qw(T x, const char aft, const bool pt) {
if (x < 0) {x = -x, putchar('-');}
int top = 0;
do {OPT::buf[++top] = static_cast<char>(x % 10 + '0');} while (x /= 10);
while (top) putchar(OPT::buf[top--]);
if (pt) putchar(aft);
} const int maxn = 200005; int n;
ll ans;
int fa[maxn], MU[maxn];
std::vector<int>son[maxn];
std::priority_queue<int>Q[maxn]; void dfs(const int u);
void merge(std::priority_queue<int> &u, std::priority_queue<int> &v); int main() {
freopen("1.in", "r", stdin);
qr(n);
for (int i = 1; i <= n; ++i) qr(MU[i]);
for (int i = 2; i <= n; ++i) {
qr(fa[i]);
son[fa[i]].push_back(i);
}
dfs(1);
while (!Q[1].empty()) {
ans += Q[1].top(); Q[1].pop();
}
qw(ans, '\n', true);
return 0;
} void dfs(const int u) {
int wson = 0;
for (auto v : son[u]) {
dfs(v);
if (Q[wson].size() < Q[v].size()) wson = v;
}
for (auto v : son[u]) if (v != wson) {
merge(Q[wson], Q[v]);
}
Q[u].swap(Q[wson]);
Q[u].push(MU[u]);
} void merge(std::priority_queue<int> &u, std::priority_queue<int> &v) {
static int tmp[maxn];
int cnt = 0;
while (!v.empty()) {
tmp[++cnt] = std::max(u.top(), v.top());
u.pop(); v.pop();
}
while (cnt) u.push(tmp[cnt--]);
}

Summary

注意长链剖分在向上合并长链信息的时候只能交换两个节点的头指针,如果暴力枚举子节点的元素插入父节点的话复杂度是不对的,例如:考虑一条链的情况,会被卡到 \(O(n^2)\)。

【堆的启发式合并】【P5290】[十二省联考2019]春节十二响的更多相关文章

  1. P5290 [十二省联考2019]春节十二响(堆+启发式合并)

    P5290 [十二省联考2019]春节十二响 从特殊到一般 我们先看链的情况. 我们把点$1$左右的两条子链分别扔入堆里 每次取出两个堆的最大值,把答案累加上更大的那个(另一堆为空则直接加上去). 那 ...

  2. P5290 [十二省联考2019]春节十二响

    题目地址:P5290 [十二省联考2019]春节十二响 骗分方法 如果你实在一点思路也没有,暴力都不会打,那么请考虑一下骗分. 方法一 输出所有 \(M\) 的和. 期望得分:0分. 实际还有5分 方 ...

  3. luogu P5290 [十二省联考2019]春节十二响 优先队列_启发式合并

    思维难度不大,在考上上写的启发式合并写错了,只拿了 60 pts,好难过QAQ 没什么太难的,在考场上想出链的部分分之后很容易就能想到正解.没错,就是非常短的启发式合并.注意一下,写的要漂亮一点,否则 ...

  4. LuoguP5290 [十二省联考2019]春节十二响 | 启发式合并

    还有33天就要高考了,我在干啥-- 题目概述 一棵有根树,每个节点有权值. 要求把所有节点分成组,具有祖先-后代关系的两个节点不能被分到同一组. 每一组的代价是所包含的节点的最大权值,最小化所有组的代 ...

  5. Luogu5290 十二省联考2019春节十二响(贪心+启发式合并)

    考虑链的做法,显然将两部分各自从大到小排序后逐位取max即可,最后将根计入.猜想树上做法相同,即按上述方式逐个合并子树,最后加入根.用multiset启发式合并即可维护.因为每次合并后较小集合会消失, ...

  6. Luogu P5290 [十二省联考2019]春节十二响

    这题是最近看到的今年省选题中最良心的一道了吧 看题+想题+写题都可以在0.5h内解决,送分含义明显啊 首先理解了题意后我们很快就能发现两个点如果要被分在一段那么必须在它们的祖先处合并 首先我们考虑下二 ...

  7. 【题解】Luogu P5290 [十二省联考2019]春节十二响

    原题传送门 每个点维护一个堆,表示这个点及其子树所需的每段内存的空间 搜索时从下向上做启发式合并堆中信息,最后根节点堆中所有内存空间之和就是答案 #include <bits/stdc++.h& ...

  8. Luogu P5290 / LOJ3052 【[十二省联考2019]春节十二响】

    联考Day2T2...多亏有这题...让我水了85精准翻盘进了A队... 题目大意: 挺简单的就不说了吧...(这怎么简述啊) 题目思路: 看到题的时候想了半天,不知道怎么搞.把样例画到演草纸上之后又 ...

  9. [LOJ3052] [十二省联考 2019] 春节十二响

    题目链接 LOJ:https://loj.ac/problem/3052 洛谷:https://www.luogu.org/problemnew/show/P5290 BZOJ:https://www ...

随机推荐

  1. Erlang数据类型的表示和实现(1)——数据类型回顾

    本文介绍 Erlang 语言中使用的各种数据类型以及这些数据类型在 Erlang 虚拟机内部的表示和实现.了解数据类型的实现可以帮助大家在实际开发过程中正确选择数据类型,并且可以更好更高效地操作这些数 ...

  2. users命令详解

    基础命令学习目录 原文链接:https://blog.csdn.net/m0_38132420/article/details/78861464 users命令用于显示当前登录系统所有的用户的用户列表 ...

  3. 学校网站UI设计分析

    在一个团队中PM,要更好的掌握项目的实施管理,包括对UI的设计,作为团队项目的PM,在听了老师课上的讲解后,对UI有了新的认识,对此,我对下面网站有了些自己的想法(只可意会不可言传,O(∩_∩)O~) ...

  4. CS小分队第二阶段冲刺站立会议(6月3日)

    昨日成果:完成了主界面按钮移动交换位置 遇到问题:最后的时候发现仅交换了按钮在数据库中的信息,对于按钮的链接忘记交换了 今日计划:解决这个问题,对这个冲刺阶段的成果进行整理

  5. 关于注册github

  6. Java Lock & Condition

    /* jdk1.5以后将同步和锁封装成了对象. 并将操作锁的隐式方式定义到了该对象中, 将隐式动作变成了显示动作. Lock接口: 出现替代了同步代码块或者同步函数.将同步的隐式锁操作变成现实锁操作. ...

  7. c# Parallel 并行运算 异步处理

    var list = new List<string> { "https://www.baidu.com","https://associates.amazo ...

  8. 评论各组alpha发布

    单纯从用户和体验者的角度来评价. 天天向上组的连连看游戏和新锋组的俄罗斯方块游戏,从alpha发布的成果完成度来看,两个游戏现在都可以玩,但连连看的完成度更高,可选背景,可选音乐.俄罗斯方块还有其他界 ...

  9. Oracle中SYS_CONNECT_BY_PATH函数的妙用 ;

    Oracle 中SYS_CONNECT_BY_PATH函数是非常重要的函数,下面就为您介绍一个使用SYS_CONNECT_BY_PATH函数的例子,实例如下: 数据准备: ),b )); ', 'A' ...

  10. PHP qq第三方登录,install时,报Not Found

    最近在学习qq的第三方登录,先在慕课网中观看了相关视频,懂了原理. 然后进行操作时,在下载好SDK后,在../install/install.html中,配置了相关的openid,oppkey,cal ...