矩阵运算

论numpy中matrix 和 array的区别:http://blog.csdn.net/vincentlipan/article/details/20717163

matrix 和 array的差别: Numpy matrices必须是2维的,但是 numpy arrays (ndarrays) 可以是多维的(1D,2D,3D····ND). Matrix是Array的一个小的分支,包含于Array。所以matrix 拥有array的所有特性。

1.基本运算

import numpy as np

a = np.array([[-1,2],[2,3]])
b = np.array([[3,4],[4,5]])
print '\n a:\n',a
print '\n b:\n',b ##转置
print '\n a transpose:\n',a.T ##共扼矩阵
#print '\n a H:\n',a.I ##逆矩阵
print '\n a inv:\n',np.linalg.inv(a) # 求逆 ##转置
print '\n a transpose:\n',a.T # a + b,矩阵相加
print "\n a+b: \n",a+b # a - b,矩阵相减
print "\n a-b: \n",a-b #2x2 矩阵,矩阵相乘
print "\n a mul b:\n",a.dot(b.T) #2x3矩阵,矩阵点乘
print "\n a dot b: \n",a*b #2x3矩阵,矩阵点除
print "\n a/b \n:",a/np.linalg.inv(b) #求迹
print "\n a trace",np.trace(a) #特征,特征向量
eigval,eigvec = np.linalg.eig(a)
#eigval = np.linalg.eigvals(a) #直接求解特征值 print "\n a eig value:\n",eigval,
print'\n a eig vector:\n',eigvec

运算结果:

a:
[[-1 2]
[ 2 3]] b:
[[3 4]
[4 5]] a transpose:
[[-1 2]
[ 2 3]] a inv:
[[-0.42857143 0.28571429]
[ 0.28571429 0.14285714]] a transpose:
[[-1 2]
[ 2 3]] a+b:
[[2 6]
[6 8]] a-b:
[[-4 -2]
[-2 -2]] a mul b:
[[ 5 6]
[18 23]] a dot b:
[[-3 8]
[ 8 15]] a/b
: [[ 0.2 0.5]
[ 0.5 -1. ]] a trace 2 a eig value:
[-1.82842712 3.82842712]
a eig vector:
[[-0.92387953 -0.38268343]
[ 0.38268343 -0.92387953]]

2.特殊矩阵

import numpy as np
a = np.zeros([4,5]) # all zero
print '\nall zero \n',a
a = np.ones([7,6]) # all one
print '\nall one \n',a
a = np.eye(4,7) # 4x7 diagonal
print '\n4x7 diagonal \n',a
a = np.diag(range(5)) # 5x5 diagonal
print '\n5x5 diagonal \n',a
a = np.empty((2,3))
print '\nempty \n',a a = np.arange(10, 30, 5) # array([10, 15, 20, 25]), 1-D
print '\n array([10, 15, 20, 25]), 1-D \n',a
a = np.linspace(0, 2, 9) # 9 numbers from 0 to 2
print '\n9 numbers from 0 to 2 \n',a
a = np.random.random((2,3)) # random matrics
print '\nrandom matrics \n',a
import numpy as np
a = np.zeros([4,5]) # all zero
print '\nall zero \n',a
a = np.ones([7,6]) # all one
print '\nall one \n',a
a = np.eye(4,7) # 4x7 diagonal
print '\n4x7 diagonal \n',a
a = np.diag(range(5)) # 5x5 diagonal
print '\n5x5 diagonal \n',a
a = np.empty((2,3))
print '\nempty \n',a

a = np.arange(10, 30, 5) # array([10, 15, 20, 25]), 1-D
print '\n array([10, 15, 20, 25]), 1-D \n',a
a = np.linspace(0, 2, 9) # 9 numbers from 0 to 2
print '\n9 numbers from 0 to 2 \n',a
a = np.random.random((2,3)) # random matrics
print '\nrandom matrics \n',a

运算结果:

all zero
[[ 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0.]] all one
[[ 1. 1. 1. 1. 1. 1.]
[ 1. 1. 1. 1. 1. 1.]
[ 1. 1. 1. 1. 1. 1.]
[ 1. 1. 1. 1. 1. 1.]
[ 1. 1. 1. 1. 1. 1.]
[ 1. 1. 1. 1. 1. 1.]
[ 1. 1. 1. 1. 1. 1.]] 4x7 diagonal
[[ 1. 0. 0. 0. 0. 0. 0.]
[ 0. 1. 0. 0. 0. 0. 0.]
[ 0. 0. 1. 0. 0. 0. 0.]
[ 0. 0. 0. 1. 0. 0. 0.]] 5x5 diagonal
[[0 0 0 0 0]
[0 1 0 0 0]
[0 0 2 0 0]
[0 0 0 3 0]
[0 0 0 0 4]] empty
[[ 0.06012241 0.30847312 0.20174074]
[ 0.37654373 0.71036135 0.15586512]] array([10, 15, 20, 25]), 1-D
[10 15 20 25] 9 numbers from 0 to 2
[ 0. 0.25 0.5 0.75 1. 1.25 1.5 1.75 2. ] random matrics
[[ 0.44052293 0.42283564 0.44825331]
[ 0.66735609 0.32664018 0.17015328]]

Python知识(6)--numpy做矩阵运算的更多相关文章

  1. 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 3、Python Basics with numpy (optional)

    Python Basics with numpy (optional)Welcome to your first (Optional) programming exercise of the deep ...

  2. 给深度学习入门者的Python快速教程 - numpy和Matplotlib篇

    始终无法有效把word排版好的粘贴过来,排版更佳版本请见知乎文章: https://zhuanlan.zhihu.com/p/24309547 实在搞不定博客园的排版,排版更佳的版本在: 给深度学习入 ...

  3. python主要用来做什么

    python这门编程语言在国外极受欢迎,但在国内使用还不是极普遍. 由于python编程效率极高,现在国内的使用者也开始变得越来越多. python主要用来做什么?这个语言到底有哪些作用呢? 下面主是 ...

  4. 学了 Python 能用来做这些!

    来源商业新知网,原标题:学了 Python 能用来做什么? 说起编程语言,Python 也许不是使用最广的,但一定是现在被谈论最多的.随着近年大数据.人工智能的兴起,Python 越来越多的出现在人们 ...

  5. python及pandas,numpy等知识点技巧点学习笔记

    python和java,.net,php web平台交互最好使用web通信方式,不要使用Jypython,IronPython,这样的好处是能够保持程序模块化,解耦性好 python允许使用'''.. ...

  6. python知识大全目录,想学的看过来!

    Python总结篇——知识大全   python装饰器   PyCharm安装与配置,python的Hello World   sort与sorted的区别及实例   我必须得告诉大家的MySQL优化 ...

  7. Python 机器学习库 NumPy 教程

    0 Numpy简单介绍 Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy.matplotlib一起使用.其实,list已经提供了类似于矩阵的表示形式,不过numpy ...

  8. 软件测试人必备的 Python 知识图

    之前发过蛮多不少关于 Python 学习的文章,收到大家不少的好评,不过大家也有许多困惑: 现在测试不好做,是不是真的该重新去学一门热门的语言? 入门 Python 该学哪些知识点?该看哪些书? 可以 ...

  9. Python过滤掉numpy.array中非nan数据实例

    代码 需要先导入pandas arr的数据类型为一维的np.array import pandas as pd arr[~pd.isnull(arr)] 补充知识:python numpy.mean( ...

随机推荐

  1. Fiddler大师之路系列(一)

    江湖传言,Fiddler是捕获客户端与服务器之间的所有HTTP(S) 请求的利器,但是在具体使用过程中,发现使用Fiddler进行抓包时有一部分请求总是没到,多方苦寻之下发现客户端使用WinINET这 ...

  2. C#连接MySQL 操作步骤

    1.工具安装: 安装 MySQL For Windows,这个不多说,上官网下载: 安装mysql-connector-net,这个是MySQL数据库.NET开发驱动,因为C#是.NET架构的,所以需 ...

  3. 大数据系列之数据仓库Hive原理

    Hive系列博文,持续更新~~~ 大数据系列之数据仓库Hive原理 大数据系列之数据仓库Hive安装 大数据系列之数据仓库Hive中分区Partition如何使用 大数据系列之数据仓库Hive命令使用 ...

  4. Group Normalization笔记

    作者:Yuxin,Wu Kaiming He 机构:Facebook AI Research (FAIR) 摘要:BN是深度学习发展中的一个里程碑技术,它使得各种网络得以训练.然而,在batch维度上 ...

  5. 03 Go 1.3 Release Notes

    Go 1.3 Release Notes Introduction to Go 1.3 Changes to the supported operating systems and architect ...

  6. 数据库-mysql安装

    MySQL 安装 所有平台的Mysql下载地址为: MySQL 下载. 挑选你需要的 MySQL Community Server 版本及对应的平台. Linux/UNIX上安装Mysql Linux ...

  7. django(1)安装及配置

    1.版本选择 Django 1.5.x 支持 Python 2.6.5 Python 2.7, Python 3.2 和 3.3. Django 1.6.x 支持 Python 2.6.X, 2.7. ...

  8. Merkle Tree(默克尔树)算法解析

    Merkle Tree概念 Merkle Tree,通常也被称作Hash Tree,顾名思义,就是存储hash值的一棵树.Merkle树的叶子是数据块(例如,文件或者文件的集合)的hash值.非叶节点 ...

  9. 查找Mysql慢查询Sql语句

    一.MySQL数据库有几个配置选项可以帮助我们及时捕获低效SQL语句 1,slow_query_log 这个参数设置为ON,可以捕获执行时间超过一定数值的SQL语句. 2,long_query_tim ...

  10. js对象的属性:数据(data)属性和访问器(accessor)属性

    此文为转载,原文: 深入理解对象的数据属性与访问器属性 创建对象的方式有两种:第一种,通过new操作符后面跟Object构造函数,第二种,对象字面量方式.如下 var person = new Obj ...