Eigen 是一个基于C++的线性代数库,其中实现大量常用的线性代数算法,包括常规矩阵计算,矩阵变换,矩阵分解,矩阵块操作。Eigen 广泛地应用在开源项目中,例如OpenCV,PCL(Point Cloud Library),ROS等。其实Eigen中算法都可以在matlab中找到,但是由于matlab是半开源的。所以,如果想在自己的项目中使用,还是要义无反顾地选择Eigen。Eigen目前的版本是3.3.4(2018.4.21)。

  来看Eigen官网的第一个例子:

  

 #include <iostream>
#include <eigen3/Eigen/Dense> using Eigen::MatrixXd; int main(int argc ,char** argv)
{
MatrixXd:: m(,);
m(,) = ;
m(,) = 2.5;
m(,) = -;
m(,) = m(,) + m(,);
std::cout<<m<<std::endl;
return ;
}

首先,代码引入了eigen的头文件,这里Eigen/Dense 一次引入了多个常用的模块。

  程序首先定义了一个2 x 2的矩阵。根据Eigen的定义 ,MatrixXd,这个类型可以拆成三部分来看,Matrix-X-d,Matrix表示定义的是一个矩阵,X表示定义的矩阵维度不确定,d表示double,指矩阵中每一个元素都是double类型的。m(2,2)指定了矩阵的大小是2x2的。从第9 行到第12 行则为矩阵中的元素进行了赋值操作。

  最后输出矩阵。

  在系统中运行输出如下:

  

来看第二个例子,区分一下矩阵(Matrix)和向量(Vector)的区别:

 #include <iostream>
#include <eigen3/Eigen/Dense> using namespace Eigen;
uisng namespace std; int main(int argc ,char** argv)
{
    // 创建一个3 x 3的随机矩阵,每个元素的范围都在(-1,1)之间
MatrixXd m = MatrixXd::Random(,);
    // 将每个元素的范围设置在 (10,110)之间,MatrixXd::Cosntant() 用于产生每个元素都相同的矩阵,这里每个元素都是1.2
m = (m + MatrixXd::Constant(,,1.2)) * ;
cout<<"m="<<endl<<m<<endl;
    //创建一个长度为 3 的向量,
VectorXd v();
    //为向量元素赋值,这里Eigen 将 << 操作符重载了。
v<<,,3;
    //矩阵和向量做乘法并输出结果
cout<<"m*v"<<m*v<<endl; return ;
}

运行结果如下:

    

 上面的例子展示生成矩阵和向量的不同方法,其实向量就是列数为1 的矩阵。

Eigen学习的更多相关文章

  1. Eigen学习之简单线性方程与矩阵分解

    Eigen提供了解线性方程的计算方法,包括LU分解法,QR分解法,SVD(奇异值分解).特征值分解等.对于一般形式如下的线性系统: 解决上述方程的方式一般是将矩阵A进行分解,当然最基本的方法是高斯消元 ...

  2. Eigen 学习之块操作

    Eigen 为 Matrix .Array 和  Vector提供了块操作方法.块区域可以被用作 左值 和 右值.在Eigen中最常用的块操作函数是 .block() . block() 方法的定义如 ...

  3. Eigen学习之Array类

    Eigen 不仅提供了Matrix和Vector结构,还提供了Array结构.区别如下,Matrix和Vector就是线性代数中定义的矩阵和向量,所有的数学运算都和数学上一致.但是存在一个问题是数学上 ...

  4. Eigen学习笔记2-Matrix类

    在Eigen中,所有的矩阵Matrix和向量Vector都是由Matrix类构造的.向量只不过是矩阵的特殊形式,只有一列(列向量)或者一行. Matrix模板类有6个参数,其中前三个参数是必须的.前三 ...

  5. Eigen学习笔记2:C++矩阵运算库Eigen介绍

    Eigen常规矩阵定义 1.使用 Eigen的使用在官网上有详细的介绍,这里对我学习过程中用到的基本操作进行介绍.首先是矩阵的定义.在矩阵类的模板参数共有6个.一般情况下我们只需要关注前三个参数即可. ...

  6. Eigen学习笔记1:在VS2015下Eigen(矩阵变换)的配置

    一.Eigen简介 Eigen是一个高层次的C ++库,有效支持线性代数,矩阵和矢量运算,数值分析及其相关的算法. Eigen适用范围广,支持包括固定大小.任意大小的所有矩阵操作,甚至是稀疏矩阵:支持 ...

  7. Eigen 学习笔记

    1.  初始化 //外部指针初始化 ]={...}; ] = ...; kernels[].mu = Vector3d(_mu0); kernels[].sigma_inv = Matrix3d(_s ...

  8. 数值优化(Numerical Optimization)学习系列-无梯度优化(Derivative-Free Optimization)

    数值优化(Numerical Optimization)学习系列-无梯度优化(Derivative-Free Optimization) 2015年12月27日 18:51:19 下一步 阅读数 43 ...

  9. Eigen 矩阵库学习笔记

    最近为了在C++中使用矩阵运算,简单学习了一下Eigen矩阵库.Eigen比Armadillo相对底层一点,但是只需要添加头文库即可使用,不使用额外的编译和安装过程. 基本定义 Matrix3f是3* ...

随机推荐

  1. hanlp的基本使用--python(自然语言处理)

    hanlp拥有:中文分词.命名实体识别.摘要关键字.依存句法分析.简繁拼音转换.智能推荐. 这里主要介绍一下hanlp的中文分词.命名实体识别.依存句法分析,这里就不介绍具体的hanlp的安装了,百度 ...

  2. vue制作小程序--server

    服务端代码,开发者工具有提供 指南 https//cloud.tencent.com/document/product/619/11442 参考文档API https://developers.wei ...

  3. Ubuntu各版本的历史发行界面

    不多说,直接上干货! 总的网址是:http://releases.ubuntu.com/releases/  比如,选择的是UbuntuKylin,则点击 http://cdimage.ubuntu. ...

  4. redis集群与分片(2)-Redis Cluster集群的搭建与实践

    Redis Cluster集群 一.redis-cluster设计 Redis集群搭建的方式有多种,例如使用zookeeper等,但从redis 3.0之后版本支持redis-cluster集群,Re ...

  5. C/C++ 类型内存占用详解

    最近做一些面试题目碰到了很多次考察C/C++类型内存占用的题目,主要考察队C/C++的指针.类型等的熟悉程度. 本blog为了方面大家参考,总结了常见的类型内存占用的情况,能力所限,若有问题,请指出! ...

  6. Python中类的属性的访问控制

    因为自己是做.NET的,之前有学习过Python,喜欢这门语言的很多特性,最近又不时看了一会儿,将自己的感受分享给大家,其中也难免会用C#的角度看Python的语法,主要还是讲下Python中类中对属 ...

  7. Java基础教程(20)--数字和字符串

    一.数字   在用到数字时,大多数情况下我们都会使用基本数据类型.例如: int i = 500; float gpa = 3.65f; byte mask = 0xff;   然而,有时候我们既需要 ...

  8. WebApiTestHelpPage

    这是个什么鬼,第一次见到的时候,我也不知道就花几天时间看了下它的代码 在网上搜索WebApiTestHelpPage会出来很多相关页面   但是它们都是介绍怎么用的,要么就是怎么添加注释   它是怎么 ...

  9. K8S基础概念

    一.核心概念 1.Node Node作为集群中的工作节点,运行真正的应用程序,在Node上Kubernetes管理的最小运行单元是Pod.Node上运行着Kubernetes的Kubelet.kube ...

  10. python开发必备神器 Virtualenv及管理工具Virtualenvwrapper

    如果在一台机器上,想开发多个不同的项目,需要用到同一个包的不同版本,如果还在本地继续安装,在同一个目录下安装或者更新,其它的项目必须就无法运行了,怎么办呢? 解决方案:虚拟环境 虚拟环境可以搭建独立的 ...