BZOJ 1951SDOI2010 古代猪文
真是到很强的数学题
先利用欧拉定理A^B %p=A^(B%φ(p)+φ(p) ) %p
然后利用卢卡斯定理求出在modφ(p)的几个约数下的解
再利用中国剩余定理合并
计算答案即可
By:大奕哥
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod=;
ll pri[]={,,,};
ll fac[][],inv[][],ans[],n,g;
void init(ll p,ll fac[],ll inv[])
{
fac[]=;
for(int i=;i<=p;++i)fac[i]=fac[i-]*i%p;
inv[]=inv[]=;
for(int i=;i<=p;++i)inv[i]=(p/i+)*inv[i-p%i]%p;
for(int i=;i<=p;++i)inv[i]=inv[i]*inv[i-]%p;
}
ll C(ll a,ll b,ll p,ll fac[],ll inv[])
{
if(a<b)return ;
if(a<p&&b<p)return fac[a]*inv[b]%p*inv[a-b]%p;
return C(a/p,b/p,p,fac,inv)*C(a%p,b%p,p,fac,inv)%p;
}
void exgcd(ll a,ll b,ll &x,ll &y)
{
if(!b){
x=;y=;return;
}
exgcd(b,a%b,x,y);
ll t=x;x=y;y=t-a/b*y;
}
ll CRT()
{
ll sum=;
for(int i=;i<;++i)
{
ll x,y;
exgcd((mod-)/pri[i],pri[i],x,y);
sum+=ans[i]*((mod-)/pri[i])%(mod-)*x%(mod-);
sum%=(mod-);
}
return sum;
}
void cal(ll x)
{
for(int i=;i<;++i)
{
ans[i]+=C(n,x,pri[i],fac[i],inv[i]);
ans[i]%=pri[i];
}
return;
} ll qmod(ll a,ll b)
{
ll ans=;
while(b)
{
if(b&)ans=ans*a%mod;
a=a*a%mod;b>>=;
}
return ans;
}
int main()
{
for(int i=;i<;++i)init(pri[i],fac[i],inv[i]);
scanf("%d%d",&n,&g);
for(int i=;i*i<=n;++i)
{
if(i*i==n)cal(i);
else if(n%i==)cal(i),cal(n/i);
} ll ans=CRT();
ans=qmod(g%mod,ans+mod-);
printf("%lld\n",ans);
return ;
}
BZOJ 1951SDOI2010 古代猪文的更多相关文章
- BZOJ 1951 古代猪文
快速幂+枚举质因数+欧拉定理+lucas定理+CRT. 注意两点: 1.if (n<m) C(n,m)=0. 2.这里0^0时应该return 0. #include<iostream&g ...
- BZOJ 1951: [Sdoi2010]古代猪文( 数论 )
显然答案是G^∑C(d,N)(d|N).O(N^0.5)枚举N的约数.取模的数999911659是质数, 考虑欧拉定理a^phi(p)=1(mod p)(a与p互质), 那么a^t mod p = a ...
- BZOJ 1951: [Sdoi2010]古代猪文 [Lucas定理 中国剩余定理]
1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 2194 Solved: 919[Submit][Status] ...
- BZOJ 1951 【SDOI2010】 古代猪文
题目链接:古代猪文 好久没写博客了,这次就先写一篇吧…… 题面好鬼……概括起来就是:给出\(N,G(\leqslant 10^9)\),求:\[G^{\sum_{d|n}\binom{n}{d}} \ ...
- 古代猪文 BZOJ 1951
古代猪文 [问题描述] “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边 ...
- 【BZOJ1951】[SDOI2010]古代猪文
[BZOJ1951][SDOI2010]古代猪文 题面 bzoj 洛谷 题解 题目实际上是要求 $ G^{\sum d|n\;C_n^d}\;mod \; 999911659 $ 而这个奇怪的模数实际 ...
- 【BZOJ1951】古代猪文(CRT,卢卡斯定理)
[BZOJ1951]古代猪文(CRT,卢卡斯定理) 题面 BZOJ 洛谷 题解 要求什么很显然吧... \[Ans=G^{\sum_{k|N}{C_N^k}}\] 给定的模数是一个质数,要求解的东西相 ...
- BZOJ-1951 古代猪文 (组合数取模Lucas+中国剩余定理+拓展欧几里得+快速幂)
数论神题了吧算是 1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec Memory Limit: 64 MB Submit: 1573 Solved: 650 [Submit ...
- 1951: [Sdoi2010]古代猪文
1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 2171 Solved: 904[Submit][Status] ...
随机推荐
- 27、增强for循环
增强for循环 使用增强for循环可以简化数组和Collection集合的遍历,格式: for(元素数据类型 变量 : 数组或者Collection集合) { 使用变量即可,该变量就是元素 } 例: ...
- jquery对不同id的按钮执行同一类型的操作
不同id执行相同操作: $("#id1,#id2,#id3,#id4") 获取相同class的text值: $(".className").each(funct ...
- java 压缩与解压
最近复习到IO,想找个案例做一做,恰好下载了许多图片压缩包,查看图片很不方便,所以打算用IO把图片都解压到同一个文件夹下.然后集中打包. 本例使用jdk自带的ZipInputStream和ZipOut ...
- libevent简介和使用【转】
转自:http://www.open-open.com/lib/view/open1386510630330.html libevent是一个基于事件触发的网络库,memcached底层也是使用lib ...
- awk的常用内置函数的使用【转】
手把手教你在linux下熟悉使用awk的指令结构 (15) 大家好,今天和大家说一下awk吧.反正正则 早晚也要和大家说,不如一点一点和大家先交代清楚了,省得以后和大家说的时候,大家有懵的感觉... ...
- 【不知道是啥的NOIP模拟赛】网络入侵
题意是这样的: 给你一棵树,每个边有一个初始的0/1边权.你希望把它弄成一个给定的样子. 你每次可以选一条树链取反,然后问你最少要操作几次. ----------------------------- ...
- 002_Linux-Memory专题
一.单独查看某个进程的内存占用 pmap 736 | tail -n 1 二. 以前我对这块认识很模糊,而且还有错误的认识:今天由我同事提醒,所以我决定来好好的缕缕这块的关系. 图: -------- ...
- Dropout caffe源码
GPU和CPU实现的不一样,这里贴的是CPU中的drop out 直接看caffe里面的源码吧:(产生满足伯努利分布的随机数mask,train的时候,data除以p,...... scale_ = ...
- Metronic 5.0.5 bootstrap后台管理模板
演示地址:http://keenthemes.com/preview/metronic/ 下载 Dashboard Table
- event对象在IE和firefox下兼容写法
由于项目需求要求只能允许用户输入数字和小数,用到了event.keycode后IE系列.chrome浏览器都无问题,在firefox下出现了event not defined的错误 原因:火狐下eve ...