DP Training(Updating)
感觉前面做了那么多$dp$全是自己想的还是太少啊……
好像在LZT的博客上看到了不错的资源?赶紧开坑,以一句话题解为主
Codeforces 419B
第一题就开始盗图
由于只有一个交点,手玩一下发现两人的路径可以分为四块区域,且只有两种情况:
预处理四个方向的最长距离,枚举相交点即可
FZU 2234:
将往返路径看成从起点出发的两条路径
$dp[Xa][Xb][STEP]$用三维记录两个当前位置,转移时注意两点是否重复
Tip:建状态时注意是否有能合并的维度!
POJ 1050:
一开始想成最大全1子矩阵了……
这样权值和最大子矩阵好像也只能$O(n^3)$做:
$O(n^2)$枚举左右端点,再转换成1维$O(n)$算一遍从上到下的最长子序列
HDU 1024:
最大$m$字段和我可能之前学的是假的转移……
直接设$dp[i][j]$表示取前$i$个且第$i$个必选的最大$j$字段和,不需要再加一维表示是否选$i$
转移:$dp[i][j]=max(dp[i-1][j],dp[k][j-1])+a[i]$,滚动数组+记录前一层到$i-1$的最大值
Tip:
1、分清哪一层滚动来确定嵌套顺序
2、第二层(i)不能每次从1开始枚举,要从$j$开始!!!
边界尽量卡死防止出错
加强版见:https://www.cnblogs.com/newera/p/9534648.html
HDU 1257:
可以直接贪心判断是否需要增加系统并维护每个系统的末尾值
不过这其实是一道$Dilworth$定理相关的题
借此机会又好好复习了下集合论里的一些概念和证明:传送门
这题将偏序关系设为$i<j$且$a[i]<a[j]$,那么每个系统就是一条反链
最长链长度=最小反链覆盖,因此直接求LIS即可
HDU 1025:
按一边排序后直接LIS,注意输出里的$road$和$roads$……(还是要好好看样例!)
HDU 5282:
这里用$cnt[i][j]$计数时按是否选$a_i$分类:
(注意分类转移的设置!)
1、不选$a_i$:$f[i][j]=f[i-1][j]$时加上$cnt[i-1][j]$
2、选$a_i$:预处理出$b_j$前第一个与$a_i$相同的位置$pre$
$f[i-1][pre-1]+1=f[i][j]$时加上$cnt[i-1][pre-1]$
FZU 2214:
尽量用范围小的量做状态!
POJ 2184:
要求在两个量和都大于0的情况下求最大的和
这样必定不能用和来建状态,而应该以其中一个量作状态用值存另一个量的最大值
UVa 624:
可以把$weight,value$都看成$w[i]$直接做背包
也可以用$vis[i][j]$表示能否凑出$j$
HDU 2639:
求第$K$大背包
转移的项与原来相同,只是对于每个原来状态都记录下前$K$大的值
每次转移时将$2*K$个数$O(n)$合并求出前$K$大即可
HDU 5534:
只要$\sum d_i=2*(n-1)$,那么就存在这样的一棵树
如果将每个点作为第一维那么转移是$O(n)$的,思考如何优化
发现将$d_i$相同的点合并看成一种物品再进行一些处理就能跑完全背包了!
Tips:
1、为了消除物品总数必须为$n$的限制,先给每个点分配1的度数,只考虑增量
这样就变成$W=n-2,num=n-2,w[i]'=w[i]-w[1]$的无限制完全背包了
2、注意这里要求总重量恰为$n-2$,而非至多,因此要把$dp$数组初始化为-INF$
DP Training(Updating)的更多相关文章
- DP Training(Updating)♪(^∇^*)
DP Training DP Training 01 https://vjudge.net/contest/220286 密码 nfls A 数塔(Easy) \(f[i][j]\) 表示当前选第 \ ...
- xtu DP Training C.炮兵阵地
炮兵阵地 Time Limit: 2000ms Memory Limit: 65536KB This problem will be judged on PKU. Original ID: 11856 ...
- xtu DP Training B. Collecting Bugs
B. Collecting Bugs Time Limit: 10000ms Memory Limit: 64000KB 64-bit integer IO format: %lld Jav ...
- (zhuan) 一些RL的文献(及笔记)
一些RL的文献(及笔记) copy from: https://zhuanlan.zhihu.com/p/25770890 Introductions Introduction to reinfor ...
- [C6] Andrew Ng - Convolutional Neural Networks
About this Course This course will teach you how to build convolutional neural networks and apply it ...
- 2017 Multi-University Training Contest - Team 9 1001&&HDU 6161 Big binary tree【树形dp+hash】
Big binary tree Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)T ...
- 2017 Multi-University Training Contest - Team 1 1003&&HDU 6035 Colorful Tree【树形dp】
Colorful Tree Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)T ...
- Gym - 100676G Training Camp (状压dp)
G. Training Camp[ Color: Yellow ]Montaser is planning to train very hard for ACM JCPC 2015; he has p ...
- 2014 Super Training #9 E Destroy --树的直径+树形DP
原题: ZOJ 3684 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3684 题意: 给你一棵树,树的根是树的中心(到其 ...
随机推荐
- Logback的继承体系
今天碰到一个问题,发现控制台日志输出两遍,搜索得知,这个是由于logback继承体系导致的. logback不仅会继承level,也会继承appender,需要注意的是: <root> & ...
- maven profile 优先级
maven profile是有优先级别 也就是说在setting.xml的profile优先级比pom中同名的profile高. 可以使用 mvn help:active-profiles 这个命令是 ...
- centos6.9系统优化
仅供参考 有道云笔记链接->
- mysql取以当前时间为中心的任意时间段的时间戳
例如:取当前时间后一年的时间戳 SELECT UNIX_TIMESTAMP(date_sub(curdate(),interval -1 YEAR)) SELECT UNIX_TIMESTAMP(da ...
- urllib2使用初探
在入门urllib2之前,我想应该先调研一下urllib与urllib2的区别[1].首先我们要明白的是,这两个模块不可以相互替代.两者都是接受URL请求的模块,但是提供了不同的功能,两个显著的区别是 ...
- Dropout caffe源码
GPU和CPU实现的不一样,这里贴的是CPU中的drop out 直接看caffe里面的源码吧:(产生满足伯努利分布的随机数mask,train的时候,data除以p,...... scale_ = ...
- Vue.js 基础快速入门
Vue.js是一个JavaScript MVVM库,它是以数据驱动和组件化的思想构建的.Vue.js提供了简洁.易于理解的API,使得我们能够快速地上手并使用Vue.js 如果之前已经习惯了用jQue ...
- No.2 selenium学习之路之八种基本定位
selenium的八种定位方式 1.通过id定位 find_element_by_id() send_keys() 输入框输入字符串 click() 鼠标点击事件 注:send_keys输入 ...
- java小爬虫
爬取煎蛋网 1.找出页面网址的规律 2.设计页面图片网址的正则 代码: import java.io.BufferedInputStream; import java.io.BufferedOutpu ...
- Linux命令之cp命令
cp命令:用来将一个或多个源文件或者目录复制到指定的目的文件或目录.它可以将单个源文件复制成一个指定文件名的具体的文件或一个已经存在的目录下.cp命令还支持同时复制多个文件,当一次复制多个文件时,目标 ...