洛谷 P3990 [SHOI2013]超级跳马 解题报告
P3990 [SHOI2013]超级跳马
题目描述
现有一个\(n\) 行 \(m\) 列的棋盘,一只马欲从棋盘的左上角跳到右下角。每一步它向右跳奇数列,且跳到本行或相邻行。跳越期间,马不能离开棋盘。
试求跳法种数\(\bmod 30011\)。
输入输出格式
输入格式:
仅有一行,包含两个正整数\(n, m\),表示棋盘的规模。
输出格式:
仅有一行,包含一个整数,即跳法种数\(\bmod 30011\)。
说明
对于\(10\%\)的数据,\(1 ≤ n ≤ 10\),\(2 ≤ m ≤ 10\);
对于\(50\%\)的数据,\(1 ≤ n ≤ 10\),\(2 ≤ m ≤ 10^5\);
对于\(80\%\)的数据,\(1 ≤ n ≤ 10\),\(2 ≤ m ≤ 10^9\);
对于\(100\%\)的数据,\(1 ≤ n ≤ 50\),\(2 ≤ m ≤ 10^9\)。
发现我的做法有点诡异...
思路:首先我们只考虑从左边某一列的转移,显然可以构造这样的一个转移矩阵
\]
然后设这个转移矩阵为\(T\),设第\(i\)列的答案矩阵为\(A_i\)
则\(A_n=T*(A_{n-1}+A_{n-3}+A_{n-5}+\dots)\)
\(A_{n-2}=T*(A_{n-3}+A_{n-5}+A_{n-7}+\dots)\)
那么有\(A_n=T*A_{n-1}+A_{n-2}\),发现这是个递推,于是再次构造矩阵加速转移
\]
然后大力搞就行了,复杂度\(O(2^3n^3\log t)\)
注意一点\(A_3=TA_2\)不符合递推式
Code:
#include <cstdio>
#include <cstring>
const int mod=30011;
int n,m;
struct matrix1
{
int dx[52][52];
matrix1(){memset(dx,0,sizeof(dx));}
matrix1 friend operator *(matrix1 n1,matrix1 n2)
{
matrix1 n3;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++)
(n3.dx[i][j]+=n1.dx[i][k]*n2.dx[k][j])%=mod;
return n3;
}
matrix1 friend operator +(matrix1 n1,matrix1 n2)
{
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
(n1.dx[i][j]+=n2.dx[i][j])%=mod;
return n1;
}
};
struct matrix2
{
matrix1 dx[3][3];
matrix2(){matrix1();}
matrix2 friend operator *(matrix2 n1,matrix2 n2)
{
matrix2 n3;
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int i1=1;i1<=n;i1++)
for(int j1=1;j1<=n;j1++)
n3.dx[i][j].dx[i1][j1]=0;
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int k=1;k<=2;k++)
n3.dx[i][j]=n3.dx[i][j]+n1.dx[i][k]*n2.dx[k][j];
return n3;
}
}S,T,F;
int main()
{
scanf("%d%d",&n,&m);
S.dx[1][1].dx[1][1]=S.dx[1][1].dx[2][1]=1;
for(int i=1;i<=n;i++)
{
T.dx[1][2].dx[i][i]=T.dx[2][1].dx[i][i]=1;
T.dx[1][1].dx[i][i]=T.dx[1][1].dx[i][i-1]=T.dx[1][1].dx[i][i+1]=1;
}
if(m==2) return printf("%d\n",S.dx[1][1].dx[n][1]),0;
m-=3,F=T;
while(m)
{
if(m&1) F=F*T;
T=T*T;
m>>=1;
}
S=F*S;
printf("%d\n",S.dx[1][1].dx[n][1]);
return 0;
}
2018.12.19
洛谷 P3990 [SHOI2013]超级跳马 解题报告的更多相关文章
- [bzoj4417] [洛谷P3990] [Shoi2013] 超级跳马
Description 现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.例如,当n = 3, m = 10时,下图是一种可 ...
- 洛谷 P3989 [SHOI2013]阶乘字符串 解题报告
P3989 [SHOI2013]阶乘字符串 题目描述 给定一个由前\(n(\le 26)\)个小写字母组成的串\(S(|S|\le 450)\).串\(S\)是阶乘字符串当且仅当前 \(n\) 个小写 ...
- 洛谷 P2048 [NOI2010]超级钢琴 解题报告
P2048 [NOI2010]超级钢琴 题目描述 小Z是一个小有名气的钢琴家,最近C博士送给了小Z一架超级钢琴,小Z希望能够用这架钢琴创作出世界上最美妙的音乐. 这架超级钢琴可以弹奏出n个音符,编号为 ...
- 洛谷_Cx的故事_解题报告_第四题70
1.并查集求最小生成树 Code: #include <stdio.h> #include <stdlib.h> struct node { long x,y,c; ...
- 洛谷 P2317 [HNOI2005]星际贸易 解题报告
P2317 [HNOI2005]星际贸易 题目描述 输入输出格式 输入格式: 输出格式: 如果可以找到这样的方案,那么输出文件output.txt中包含两个整数X和Y.X表示贸易额,Y表示净利润并且两 ...
- 洛谷 P3802 小魔女帕琪 解题报告
P3802 小魔女帕琪 题目背景 从前有一个聪明的小魔女帕琪,兴趣是狩猎吸血鬼. 帕琪能熟练使用七种属性(金.木.水.火.土.日.月)的魔法,除了能使用这么多种属性魔法外,她还能将两种以上属性组合,从 ...
- 洛谷 P2606 [ZJOI2010]排列计数 解题报告
P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...
- 洛谷1303 A*B Problem 解题报告
洛谷1303 A*B Problem 本题地址:http://www.luogu.org/problem/show?pid=1303 题目描述 求两数的积. 输入输出格式 输入格式: 两个数 输出格式 ...
- 洛谷 P2604 [ZJOI2010]网络扩容 解题报告
P2604 [ZJOI2010]网络扩容 题目描述 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不扩容的情况下,1到N的最大流: 2. ...
随机推荐
- Java字符串连接操作的性能问题
首先,看一段实验程序: package com.test; class StringTest { public static void main(String[] args) { long start ...
- happybase(TSocket read 0 bytes)
关于报错happybase 是使用python连接hbase的一个第三方库,目前基于thrift1 .在使用过程中经常碰到报错 TTransportException(type=4, message= ...
- Python中格式化format()方法详解
Python中格式化format()方法详解 Python中格式化输出字符串使用format()函数, 字符串即类, 可以使用方法; Python是完全面向对象的语言, 任何东西都是对象; 字符串的参 ...
- JavaScript学习要点
Javascript相关内容 1.序列化--json - stringify() 将对象转换为字符串 - parse() 将字符串转换为对象 list=[11,22,33,44,55]; 结果:(5) ...
- 【LDAP安装】在已编译安装的PHP环境下安装LDAP模块
在已编译安装的PHP环境下安装LDAP模块 (乐维温馨提示:其他模块也能以这个方式安装) 1.在PHP源码包内找到ldap模块文件 cd php-5.6.37 cd ext/ldap/ 2.phpiz ...
- 从零开始的Python学习 知识补充sorted
sorted()方法 sorted()可用于任何一个可迭代对象. 原型为sorted(iterable, cmp=None, key=None, reverse=False) iterable:一个可 ...
- DockerCon2017前瞻 - Docker企业版体验
DockerCon 2017将于四月17号在美国Austin召开.在去年DockerCon上,Docker公司一系列的发布吹响了进军企业市场的号角.今天,容器技术已经愈发成熟,被越来越多的企业所关注和 ...
- nginx keepalived 高可用方案(转)
转自: https://www.cnblogs.com/leeSmall/p/9356535.html 一.Nginx Rewrite 规则 1. Nginx rewrite规则 Rewrite规则含 ...
- alpha版postmortem 报告
一.团队开发存在的问题 此次会议我们团队中每个成员都仔细思考并提出了团队在这一阶段存在的问题,主要如下: 1.前期任务规划.分配不合适: 2.个人对认领任务模块完成度.了解度不够: 3.个人学习意识. ...
- web07-jdbcBookStore
新建web项目,名字 新建servlet,名字CreateDBServlet 内容为: ---- 配置web.xml 数据库的URL.driveclass.user.passWord都写在web.xm ...