51nod 1636 教育改革 | DP

题面

最近A学校正在实施教育改革。

一个学年由n天组成。A学校有m门课程,每天学生必须学习一门课,一门课程必须在一天内学习完。在学习完第i门课程后,学生们会收到 xi 个家庭作业,其中 xi是区间[ai,bi]里的一个整数 。每门课还有一个属性,就是复杂度 ci 。A学校现在要制他们的课程表,具体要求如下:

·在课程表中,随着天数的增加,课程的复杂度是严格递增的。

·除了第1天,每天的作业量必须是前一天的k倍,或者比前一天多k个作业。(假设第i天的作业量为 xi ,则对于i(1<i≤n)到满足 xi = k+xi−1 或 xi = k·xi−1 );

现在,给定天数n,系数k,和m门课程的ai,bi,ci(1≤i≤m)。要求计算一个学年可以安排最大的总作业量( 总作业量的表达式是∑ni=1xi )是多少。

Input

单组测试数据

第一行,三个由空格隔开的整数n,m,k(1≤n≤m≤50,1≤k≤100),表示一个学年的天数,课程的数量,和作业增量系数。

接下来的m行,

每行有三个整数,ai,bi,ci(1≤ai≤bi≤10^16,bi-ai≤100,1≤ci≤100)

分别表示第i门课程的最小作业量,和最多作业量,以及复杂度。

不同的课程可以有相同的复杂度。课程编号从1到m。

Output

如果有可行方案,第一行输出“YES”(没有引号),第二行输出最大的作业量。

如果没有可行方案,则输出一行“NO”(没有引号)。

题解

这教育改革怎么越改作业越多2333

dp[i][j][k]表示第i天上j课,当天作业量是k的最大答案

——但是这样显然是不行的因为k太大。

好在虽然k大,k与该课程j作业量的左端点的差不会很大。

那么就让dp[i][j][k]表示第i天上j课,当天作业量是a[j]+k(a的意义如题所述)。然后就可以愉快地转移了!

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c < '0' || c > '9')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
} const int N = 103, M = 203;
int n, m, K;
ll dp[N][N][M], ans;
struct Lesson {
int c;
ll l, r;
bool operator < (const Lesson b) const{
return c < b.c;
}
} a[N]; int main(){ read(n), read(m), read(K);
for(int i = 1; i <= m; i++)
read(a[i].l), read(a[i].r), read(a[i].c);
sort(a + 1, a + m + 1);
memset(dp, -1, sizeof(dp)); for(int j = 1; j <= m; j++)
for(ll k = a[j].l; k <= a[j].r; k++)
dp[1][j][k - a[j].l] = k; for(int i = 2; i <= n; i++)
for(int j = 1; j <= m; j++)
for(ll k = a[j].l; k <= a[j].r; k++)
for(int h = 1; a[h].c < a[j].c; h++){
if(k >= K){
ll k1 = k - K;
if(k1 >= a[h].l && k1 <= a[h].r && dp[i - 1][h][k1 - a[h].l] != -1)
dp[i][j][k - a[j].l] = max(dp[i][j][k - a[j].l], dp[i - 1][h][k1 - a[h].l] + k);
}
if(k % K == 0){
ll k2 = k / K;
if(k2 >= a[h].l && k2 <= a[h].r && dp[i - 1][h][k2 - a[h].l] != -1)
dp[i][j][k - a[j].l] = max(dp[i][j][k - a[j].l], dp[i - 1][h][k2 - a[h].l] + k);
}
}
for(int j = 1; j <= m; j++)
for(ll k = a[j].l; k <= a[j].r; k++)
ans = max(ans, dp[n][j][k - a[j].l]); if(ans) puts("YES"), write(ans), putchar('\n');
else puts("NO"); return 0;
}

51nod 1636 教育改革 | DP的更多相关文章

  1. 51 Nod 1636 教育改革(dp)

    1636 教育改革  题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题  收藏  关注 最近A学校正在实施教育改革. 一个学年由n天 ...

  2. 51nod 1636 教育改革

    题目链接 令f[i][j][k]为第i天选择的课程为j,设置作业为a[j]+k时的最大作业量. 那么f[i][j][k]可以由哪些状态转移而来?先把课程按复杂度排序,那么可以转移来的课程是f[i-1] ...

  3. 51nod 1636

    1636 教育改革 我看过题解了还下了数据,表示很惭愧不想说什么,但还是说两句吧 sol: 因为差值很小只有100,所以对数组下标存的是(选择的数值和左端点的差值) f[i][j][k]即为第i天选了 ...

  4. 51nod 1353 树 | 树形DP经典题!

    51nod 1353 树 | 树形DP好题! 题面 切断一棵树的任意条边,这棵树会变成一棵森林. 现要求森林中每棵树的节点个数不小于k,求有多少种切法. 数据范围:\(n \le 2000\). 题解 ...

  5. 51nod 1021 石子归并(dp)

    51nod 1021 石子归并 题解:从i到j合并的最小值:dp[i][j] = min(dp[i][j], dp[i][k] + dp[k+1][j] + sum[j] - sum[i-1]); 最 ...

  6. 51nod 1183 - 编辑距离 - [简单DP][编辑距离问题][Levenshtein距离问题]

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1183 编辑距离,又称Levenshtein距离(也叫做Edi ...

  7. 51nod 1406 位运算/dp

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1406 1406 与查询 题目来源: CodeForces 基准时间限制: ...

  8. 51NOD 1202 子序列个数 DP

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1202&judgeId=225600 这题看起来挺复杂,但是真正的 ...

  9. 51Nod 1327 棋盘游戏 —— 延迟DP

    题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1327 看博客:https://www.cnblogs.com/Na ...

随机推荐

  1. 【转载】pycharm常用快捷键

    来源: (https://blog.csdn.net/weixin_41059146/article/details/78826163) 1.编辑(Editing) Ctrl + Space    基 ...

  2. C#中字符串 "驻留"与Lock(转载)

    class TestWorker 2 {         3     public void DoMultiThreadedWork(object someParameter) 4     { 5   ...

  3. python-分叉树枝

    import turtle def draw_branch(length): #绘制右侧树枝 if length >5: if length == 10: turtle.pencolor('gr ...

  4. Python处理PDF和Word文档常用的方法

    Python处理PDF和Word文档的模块是PyPDF2,使用之前需要先导入. 打开一个PDF文档的操作顺序是:用open()函数打开文件并用一个变量来接收,然后把变量给传递给PdfFileReade ...

  5. 微信JS-SDK实现上传图片功能

    最近在项目开发中,有一个在微信WEB项目中上传图片的需求,一开始使用了传统的<input type="file">的方式去实现,但是后面发现在使用这种传统模式时会由于手 ...

  6. 微软职位内部推荐-SW Engineer II for Enterprise Platform

    微软近期Open的职位: Job posting title: SDE II Location: China, Beijing Group Overview Discovery & Colla ...

  7. find 删除文件

    find 目录 -type f -name '*' -print0 | xargs -0 rm

  8. git push remote: User permission denied

    这种错误因为本地保存了一个错误的账号密码,只需要重新编辑成正确的账号密码 直接上方法

  9. Linux安装软件包

    今天在坐公交的路上看到一遍文章感觉还不错,先收集了.原文链接 Linux安装软件包

  10. MathExam第二次作业

    第二次作业:MathExam 一.预估与实际 PSP2.1 Personal Software Process Stages 预估耗时(分钟) 实际耗时(分钟) Planning 计划 20 30 • ...