Description

  

  

  

Solution

  

  设当前走出了一个不匹配任何字符串的串\(S\)。

  

​  若在\(S\)后随机增添\(m\)个字符,单看这些字符而言,这\(m\)个字符匹配到每个玩家的字符串的概率是相同的,记为\(P\)。

  

  问题在于,对于每个字符串来说,并不是所有情况下一定要通过新增添\(m\)个字符才能匹配到自己,有可能加到中途时,就已经与\(S\)的某个后缀组成了自己,又或者是与\(S\)的某个后缀组成了别的字符串,早该停止了。

  

  但是,对于每个串,不管每种情况中途该不该停下,我们计算出每种情况继续增加满\(m\)个字符并匹配到自己的概率,它们的概率之和还是\(P\)。

  

   记每个人\(i\)成功被匹配到的概率是\(f_i\)(答案的定义)。

  

  现在枚举对于一个人\(i\),在新加\(m\)个字符尝试匹配自己时,所有中途应该停下的情况。

  

  ​ 枚举另一个人\(j\),如果\(j\)的\(len\)后缀与\(i\)的\(len\)前缀相同,则配合\(S\)的随机性,可能出现了这种情况:

  



  

​   这时候早就该停了,但为了凑齐\(P\),要计算在这种情况下继续匹配完全时所需的概率。继续匹配完\(i\)的子串,则还需要\((\frac 1 2)^{m-len}\)的概率。因此,这种情况对总和的贡献有\((\frac 1 2)^{m-len}f_j\)。当然,\(i\)和\(j\)之间不止有一个\(len\)满足条件,应找出所有符合描述的\(len\),累加\(f_j\)的贡献系数,记最终\(f_j\)贡献系数为\(a_j=\sum(\frac 1 2)^{m-len}\)。

  

​   其实\(j\)可以等于\(i\),这代表着提前匹配到自己的情况。

  

​   我们可以列出等式:

\[P=\sum_{i=1}^na_if_i
\]

​   总的来说,每一个人获胜的概率之和应该是1,因此有等式

\[\sum_{i=1}^nf_i=0
\]

​   算上\(P\),我们拿到了一个\(n+1\)个未知数的\(n+1\)条方程,高斯消元解决即可,尽管我们并不需要知道\(P\)的具体取值。

    

  

  

Code

  

#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
const int N=305;
int n,m;
char str[N][N];
double a[N][N],x[N];
int nex[N*2];
double mi2[N];
double kmp(int x,int y){
static char b[N*2];
for(int i=1;i<=m;i++) b[i]=str[x][i],b[m+i]=str[y][i];
nex[1]=0;
for(int i=2,j;i<=m*2;i++){
j=nex[i-1];
while(j&&b[j+1]!=b[i]) j=nex[j];
if(b[j+1]==b[i]) nex[i]=j+1;
else nex[i]=0;
}
double res=0;
for(int i=m*2;i;i=nex[i])
if(i<=m) res+=mi2[m-i];
return res;
}
void fill_matrix(){
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++)
a[i][j]=kmp(i,j);
a[i][n+1]=-1;
}
for(int i=1;i<=n;i++) a[n+1][i]=1;
a[n+1][n+2]=1;
}
void gaussian(int n){
int best;
for(int i=1;i<=n;i++){
best=i;
for(int j=i+1;j<=n;j++)
if(fabs(a[j][i])>fabs(a[best][i])) best=j;
if(best!=i)
for(int j=i;j<=n+1;j++) swap(a[i][j],a[best][j]);
for(int j=i+1;j<=n;j++){
double t=a[j][i]/a[i][i];
for(int k=i;k<=n+1;k++)
a[j][k]-=a[i][k]*t;
}
}
for(int i=n;i>=1;i--){
for(int j=i+1;j<=n;j++) a[i][n+1]-=a[i][j]*x[j];
x[i]=a[i][n+1]/a[i][i];
}
}
int main(){
scanf("%d%d",&n,&m);
mi2[0]=1;
for(int i=1;i<=m;i++) mi2[i]=mi2[i-1]*0.50000000000;
for(int i=1;i<=n;i++) scanf("%s",str[i]+1);
fill_matrix();
gaussian(n+1);
for(int i=1;i<=n;i++) printf("%.10lf\n",x[i]);
return 0;
}

【BZOJ4820】【SDOI2017】硬币游戏的更多相关文章

  1. BZOJ4820 Sdoi2017 硬币游戏 【概率期望】【高斯消元】【KMP】*

    BZOJ4820 Sdoi2017 硬币游戏 Description 周末同学们非常无聊,有人提议,咱们扔硬币玩吧,谁扔的硬币正面次数多谁胜利.大家纷纷觉得这个游戏非常符合同学们的特色,但只是扔硬币实 ...

  2. [bzoj4820][Sdoi2017]硬币游戏

    来自FallDream的博客,未经允许,请勿转载,谢谢. 周末同学们非常无聊,有人提议,咱们扔硬币玩吧,谁扔的硬币正面次数多谁胜利.大家纷纷觉得这个游戏非常符合同学们的特色,但只是扔硬币实在是太单调了 ...

  3. [BZOJ4820][SDOI2017]硬币游戏(高斯消元+KMP)

    比较神的一道题,正解比较难以理解. 首先不难得出一个(nm)^3的算法,对所有串建AC自动机,将在每个点停止的概率作为未知数做高斯消元即可. 可以证明,AC自动机上所有不是模式串终止节点的点可以看成一 ...

  4. BZOJ4820 SDOI2017硬币游戏(概率期望+高斯消元+kmp)

    容易想到的做法是建出AC自动机,高斯消元.然而自动机上节点数量是nm的. 注意到我们要求的变量只有n个,考虑将其他不用求的节点合并为一个变量.这个变量即表示随机生成一个串,其不包含任何一个模板串的概率 ...

  5. 【BZOJ4820】[SDOI2017]硬币游戏(高斯消元)

    [BZOJ4820][SDOI2017]硬币游戏(高斯消元) 题面 BZOJ 洛谷 题解 第一眼的感觉就是构\(AC\)自动机之后直接高斯消元算概率,这样子似乎就是\(BZOJ1444\)了.然而点数 ...

  6. 【BZOJ4820】[Sdoi2017]硬币游戏 AC自动机+概率DP+高斯消元

    [BZOJ4820][Sdoi2017]硬币游戏 Description 周末同学们非常无聊,有人提议,咱们扔硬币玩吧,谁扔的硬币正面次数多谁胜利.大家纷纷觉得这个游戏非常符合同学们的特色,但只是扔硬 ...

  7. BZOJ:4820: [Sdoi2017]硬币游戏&&BZOJ:1444: [Jsoi2009]有趣的游戏(高斯消元求概率)

    1444: [Jsoi2009]有趣的游戏 4820: [Sdoi2017]硬币游戏 这两道题都是关于不断随机生成字符后求出现给定字符串的概率的问题. 第一题数据范围较小,将串建成AC自动机以后,以A ...

  8. [Sdoi2017]硬币游戏 [高斯消元 KMP]

    [Sdoi2017]硬币游戏 题意:硬币序列,H T等概率出现,\(n \le 300\)个人猜了一个长为$ m \le 300$的字符串,出现即获胜游戏结束.求每个人获胜概率 考场用了[1444: ...

  9. 4820: [Sdoi2017]硬币游戏

    4820: [Sdoi2017]硬币游戏 链接 分析: 期望dp+高斯消元. 首先可以建出AC自动机,Xi表示经过节点i的期望次数,然后高斯消元,这样点的个数太多,复杂度太大.但是AC自动机上末尾节点 ...

  10. [BZOJ 4820] [SDOI2017] 硬币游戏(高斯消元+概率论+字符串hash)

    [BZOJ 4820] [SDOI2017] 硬币游戏(高斯消元+概率论+字符串hash) 题面 扔很多次硬币后,用H表示正面朝上,用T表示反面朝上,会得到一个硬币序列.比如HTT表示第一次正面朝上, ...

随机推荐

  1. springmvc使用ajax进行数据交互时,session失效问题(@ResponseBody与session能否同时使用?)

    今天做博客demo的时候遇到了这样的问题:当我用ajax进行资源请求时,需要顺便将账户信息存入session.但是后来发现有@Responsebody标签时,直接用HttpSession存数据时,根本 ...

  2. 【转】phpcms v9的ckeditor加入给内容调整行高

    今天公司一客户要求一同事给ckeditor加入可以设置行高的功能(他后台是用织梦做的,他是织梦的FANS),我一时闲得慌,也想给咱家的v9加入这个功能,功夫不负有心啊,终于成功了,来给大家分享一下! ...

  3. HDFS文件系统基础

    HDFS架构实现 Hadoop当前稳定版本是Apache Hadoop 2.9.2,最新版本是Apache Hadoop 3.1.1. http://hadoop.apache.org/docs/ H ...

  4. AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks

    ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...

  5. 机器学习算法 --- Naive Bayes classifier

    一.引言 在开始算法介绍之前,让我们先来思考一个问题,假设今天你准备出去登山,但起床后发现今天早晨的天气是多云,那么你今天是否应该选择出去呢? 你有最近这一个月的天气情况数据如下,请做出判断. 这个月 ...

  6. Less 的用法

    1. node.js node.js是一个前端的框架 自带一个包管理工具npm node.js 的安装 官网:http://nodejs.cn/ 在命令行检验是否安装成功 切换到项目目录,初始化了一个 ...

  7. PHP Filter 函数 日常可用

    PHP Filter 函数 PHP Filesystem PHP FTP PHP Filter 简介 PHP 过滤器用于对来自非安全来源的数据(比如用户输入)进行验证和过滤. 安装 filter 函数 ...

  8. Javascript开发者 常用知识

    Javascript是一种日益增长的语言,特别是现在ECMAScript规范按照每年的发布时间表发布.伴随着这门语言的规模化和快速发展,掌握JS(不仅仅是jQuery)的重要性,变得更加重要. 这不是 ...

  9. ffmpeg——压缩mav格式音频

    今天偶然帮朋友压缩一个mav格式的音频.开始用压缩码率的方式,mav格式的音频体积一点都没变,查资料需要压缩音频文件的采样率和声道才能压缩mav格式的音频. 压缩要求是:将一个mav格式的音频文件,由 ...

  10. Scrum Meeting 10.27

    1.会议内容: 姓名 今日任务 明日任务 预估时间(h) 徐越 配置SQLserver 学习本地和服务器之间的通信 4 卞忠昊 找上届代码的bug 学习安卓布局(layout)的有关知识,研究上届学长 ...