【刷题】BZOJ 3144 [Hnoi2013]切糕
Description
Input
第一行是三个正整数P,Q,R,表示切糕的长P、 宽Q、高R。第二行有一个非负整数D,表示光滑性要求。接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤P, 1≤y≤Q, 1≤z≤R)。
100%的数据满足P,Q,R≤40,0≤D≤R,且给出的所有的不和谐值不超过1000。
Output
仅包含一个整数,表示在合法基础上最小的总不和谐值。
Sample Input
2 2 2
1
6 1
6 1
2 6
2 6
Sample Output
6
HINT
最佳切面的f为f(1,1)=f(2,1)=2,f(1,2)=f(2,2)=1
Solution
拆成 \(R\) 层点,源点向第一层连边,最后一层向汇点连边
中间每一层 \(i\) 号点向下一层的 \(i\) 号点连边,流量为不和谐度
那么这样每一个纵轴就只会被切一个地方,满足题目要求
对于特殊限制,我们只要在被限制的点往上 \(D\) 层的四周的点连流量为 \(inf\) 的边即可,这样限制了四周的纵轴不能在 往上\(D\) 层之上切
最小割就代表切开,直接跑就好了
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXP=50+5,MAXN=64000+10,MAXM=MAXN*5+10,inf=0x3f3f3f3f;
int P,Q,R,D,e=1,beg[MAXN],cur[MAXN],G[MAXP][MAXP][MAXP],level[MAXN],vis[MAXN],clk,s,t,to[MAXM<<1],nex[MAXM<<1],cap[MAXM<<1],dr[4][2]={{0,1},{1,0},{-1,0},{0,-1}};
std::queue<int> q;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline int id(int x,int y,int z)
{
return (z-1)*P*Q+(x-1)*Q+y;
}
inline void insert(int x,int y,int z)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
cap[e]=z;
to[++e]=x;
nex[e]=beg[y];
beg[y]=e;
cap[e]=0;
}
inline bool bfs()
{
memset(level,0,sizeof(level));
level[s]=1;
q.push(s);
while(!q.empty())
{
int x=q.front();
q.pop();
for(register int i=beg[x];i;i=nex[i])
if(cap[i]&&!level[to[i]])level[to[i]]=level[x]+1,q.push(to[i]);
}
return level[t];
}
inline int dfs(int x,int maxflow)
{
if(x==t||!maxflow)return maxflow;
vis[x]=clk;
int res=0;
for(register int &i=cur[x];i;i=nex[i])
if((vis[x]^vis[to[i]])&&cap[i]&&level[to[i]]==level[x]+1)
{
int f=dfs(to[i],min(cap[i],maxflow));
res+=f;
cap[i]-=f;
cap[i^1]+=f;
maxflow-=f;
if(!maxflow)break;
}
return res;
}
inline int Dinic()
{
int res=0;
while(bfs())clk++,memcpy(cur,beg,sizeof(cur)),res+=dfs(s,inf);
return res;
}
int main()
{
read(P);read(Q);read(R);read(D);
for(register int k=1;k<=R;++k)
for(register int i=1;i<=P;++i)
for(register int j=1;j<=Q;++j)read(G[i][j][k]);
s=P*Q*R+1,t=s+1;
for(register int i=1;i<=P;++i)
for(register int j=1;j<=Q;++j)
for(register int k=1;k<=R;++k)
{
if(k==1)insert(s,id(i,j,k),inf);
if(k!=R)insert(id(i,j,k),id(i,j,k+1),G[i][j][k]);
else insert(id(i,j,k),t,G[i][j][k]);
}
for(register int k=D+1;k<=R;++k)
for(register int i=1;i<=P;++i)
for(register int j=1;j<=Q;++j)
for(register int p=0;p<4;++p)
{
int dx=i+dr[p][0],dy=j+dr[p][1];
if(dx<1||dx>P||dy<1||dy>Q)continue;
insert(id(i,j,k),id(dx,dy,k-D),inf);
}
write(Dinic(),'\n');
return 0;
}
【刷题】BZOJ 3144 [Hnoi2013]切糕的更多相关文章
- BZOJ 3144: [Hnoi2013]切糕
3144: [Hnoi2013]切糕 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1495 Solved: 819[Submit][Status] ...
- bzoj 3144: [Hnoi2013]切糕 最小割
3144: [Hnoi2013]切糕 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 681 Solved: 375[Submit][Status] ...
- [BZOJ 3144] [Hnoi2013] 切糕 【最小割】
题目链接:BZOJ - 3144 题目分析 题意:在 P * Q 的方格上填数字,可以填 [1, R] . 在 (x, y) 上填 z 会有 V[x][y][z] 的代价.限制:相邻两个格子填的数字的 ...
- 洛谷 P3227 BZOJ 3144 [HNOI2013]切糕
题目描述 经过千辛万苦小 A 得到了一块切糕,切糕的形状是长方体,小 A 打算拦腰将切糕切成两半分给小 B.出于美观考虑,小 A 希望切面能尽量光滑且和谐.于是她找到你,希望你能帮她找出最好的切割方案 ...
- BZOJ 3144 [HNOI2013]切糕 (最大流+巧妙的建图)
题面:洛谷传送门 BZOJ传送门 最大流神题 把点权转化为边权,切糕里每个点$(i,j,k)$向$(i,j,k+1)$连一条流量为$v(i,j,k)$的边 源点$S$向第$1$层的点连边,第$R+1$ ...
- BZOJ 3144 [Hnoi2013]切糕 ——网络流
[题目分析] 网络流好题! 从割的方面来考虑问题往往会得到简化. 当割掉i,j,k时,必定附近的要割在k-D到k+D上. 所以只需要建两条inf的边来强制,如果割不掉强制范围内的时候,原来的边一定会换 ...
- bzoj 3144 [Hnoi2013]切糕——最小割
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3144 一根纵轴上切一个点,可以把一根纵轴上的点连成一串来体现.自己的写法是每个点连向前一个点 ...
- bzoj 3144 [Hnoi2013]切糕【最小割+dinic】
都说了是'切'糕所以是最小割咯 建图: 每个点向下一层连容量为这个点的val的边,S向第一层连容量为inf的边,最后一层向T连容量为自身val的边,即割断这条边相当于\( f(i,j) \)选择了当前 ...
- 【BZOJ 3144】 3144: [Hnoi2013]切糕 (最小割模型)
3144: [Hnoi2013]切糕 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1764 Solved: 965 Description Inp ...
随机推荐
- 《杜增强讲Unity之Tanks坦克大战》3-添加坦克
3 添加坦克 3.1 本节效果预览 3.2 另存新场景 首先打开上次的场景s1,另存为s2,放到同一个文件夹下面. 3.3 添加坦克模型 在Model文件夹下面找到Tank模型 将Tank ...
- [codeForce-1006C]-Three Parts of the Array (简单题)
You are given an array d1,d2,…,dnd1,d2,…,dn consisting of nn integer numbers. Your task is to split ...
- 2.5 Oracle之存储过程和MERGE INTO语句
一.MERGE INTO语句 1.merge into语句的功能:我们操作数据库的时候,有时候会遇到insert或者Update这种需求.我们操纵代码时至少需要写一个插入语句和更新语句并且还得单独写方 ...
- 别再犯低级错误,带你了解更新缓存的四种Desigh Pattern
在我们使用分布式缓存Redis或者Memcached编写更新缓存数据代码时,我们总是会犯一个逻辑错误.先删除缓存,然后再更新数据库,而后续的操作会把数据再装载的缓存中.试想,两个并发操作,一个是更新操 ...
- linq与lambda 常用查询语句写法对比
LINQ的书写格式如下: from 临时变量 in 集合对象或数据库对象 where 条件表达式 [order by条件] select 临时变量中被查询的值 [group by 条件] Lambda ...
- Django数据库 相关之select_related/prefetch_related
- 性能相关 user_list = models.UserInfo.objects.all() for row in user_list: # 只去取当前表数据 select_related,主动连 ...
- linux递归查找文件内容并替换
sed -i 's/原字符串/替换后字符串/g' `grep '搜索关键字' -rl /data/目标目录/ --include "*.html"` 上面是递归查找目录中所有的HT ...
- SQL中读取Excel 以及 bpc语言
--开启导入功能 reconfigure reconfigure --允许在进程中使用ACE.OLEDB.12 --允许动态参数 EXEC master.dbo.sp_MSset_oledb_prop ...
- Xcode中的文件类型
文件类型 Xcode中的文件类型,总共4种类型: 1 普通文件(File) 2 Group(在Xcode中就是黄色的文件夹) 3 Folder(在Xcode中就是蓝色的文件夹) 4 Framework ...
- 奔跑吧DKY——团队Scrum冲刺阶段-Day 1-领航
各个成员在 Alpha 阶段认领的任务 修改 序号 修改 具体描述 1 游戏过程 取消原来的跳跃和俯身按钮,保留跳跃的功能,可以触屏滑动来躲避地面障碍物,也可以躲避另一种陷阱障碍物 2 闯关功能 取消 ...