BZOJ 4898 [APIO2017] 商旅 | SPFA判负环 分数规划

更清真的题面链接:https://files.cnblogs.com/files/winmt/merchant(zh_CN).pdf

题解

……APIO2017那天我似乎在……北京一日游……

【更新】诶?我……我Rank1了?//虽然只有不几个人做这道题


正经的题解:

二分答案,如果存在一种环路使得【总获利/总路程 > mid】,那么这个环路的【总(获利 - 路程 * mid)】一定大于0,换句话说,把边权换成【获利 - 路程 * mid】后,该图有正环。

正环可以用DFS版SPFA判,详见这篇论文——SPFA算法的优化及应用,每对点对(u, v)的获利、最短路程都可以预处理出来。

那么这道题还是很简单的啦。

#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#define space putchar(' ')
#define enter putchar('\n')
using namespace std;
typedef long long ll;
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c < '0' || c > '9')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
} const int N = 105, MAXK = 1005, INF = 0x3f3f3f3f;
int n, m, K, dis[N][N], val[N][N], buy[N][MAXK], sell[N][MAXK];
double l, r, mid, d[N];
bool done, ins[N]; void spfa(int u){
if(done) return;
ins[u] = 1;
for(int v = 1; v <= n; v++){
if(done) return;
if(v != u && dis[u][v] < INF && d[u] + val[u][v] - mid * dis[u][v] > d[v]){
d[v] = d[u] + val[u][v] - mid * dis[u][v];
if(ins[v]) return (void)(done = 1);
spfa(v);
}
}
ins[u] = 0;
}
bool check(){
done = 0;
memset(ins, 0, sizeof(ins));
memset(d, 0, sizeof(d));
for(int i = 1; i <= n && !done; i++)
spfa(i);
return done;
} int main(){ read(n), read(m), read(K);
for(int i = 1; i <= n; i++)
for(int j = 1; j <= K; j++)
read(buy[i][j]), read(sell[i][j]);
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
dis[i][j] = i == j ? 0 : INF;
for(int i = 1, u, v, w; i <= m; i++)
read(u), read(v), read(w), dis[u][v] = w;
for(int k = 1; k <= n; k++)
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
dis[i][j] = min(dis[i][j], dis[i][k] + dis[k][j]);
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
for(int k = 1; k <= K; k++)
if(buy[i][k] != -1 && sell[j][k] != -1){
val[i][j] = max(val[i][j], sell[j][k] - buy[i][k]);
r = max(r, (double)val[i][j]);
}
int cnt = 0;
while(++cnt <= 60){
mid = (l + r) / 2;
if(check()) l = mid;
else r = mid;
}
printf("%lld\n", (ll)floor((l + r) / 2)); return 0;
}

BZOJ 4898 [APIO2017] 商旅 | SPFA判负环 分数规划的更多相关文章

  1. [APIO2017]商旅——分数优化+floyd+SPFA判负环+二分答案

    题目链接: [APIO2017]商旅 枚举任意两个点$(s,t)$,求出在$s$买入一个物品并在$t$卖出的最大收益. 新建一条从$s$到$t$的边,边权为最大收益,长度为原图从$s$到$t$的最短路 ...

  2. BZOJ 1715: [Usaco2006 Dec]Wormholes 虫洞 DFS版SPFA判负环

    Description John在他的农场中闲逛时发现了许多虫洞.虫洞可以看作一条十分奇特的有向边,并可以使你返回到过去的一个时刻(相对你进入虫洞之前).John的每个农场有M条小路(无向边)连接着N ...

  3. POJ 3259 Wormholes(SPFA判负环)

    题目链接:http://poj.org/problem?id=3259 题目大意是给你n个点,m条双向边,w条负权单向边.问你是否有负环(虫洞). 这个就是spfa判负环的模版题,中间的cnt数组就是 ...

  4. Poj 3259 Wormholes(spfa判负环)

    Wormholes Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 42366 Accepted: 15560 传送门 Descr ...

  5. spfa判负环

    bfs版spfa void spfa(){ queue<int> q; ;i<=n;i++) dis[i]=inf; q.push();dis[]=;vis[]=; while(!q ...

  6. poj 1364 King(线性差分约束+超级源点+spfa判负环)

    King Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14791   Accepted: 5226 Description ...

  7. 2018.09.24 bzoj1486: [HNOI2009]最小圈(01分数规划+spfa判负环)

    传送门 答案只保留了6位小数WA了两次233. 这就是一个简单的01分数规划. 直接二分答案,根据图中有没有负环存在进行调整. 注意二分边界. 另外dfs版spfa判负环真心快很多. 代码: #inc ...

  8. [P1768]天路(分数规划+SPFA判负环)

    题目描述 “那是一条神奇的天路诶~,把第一个神犇送上天堂~”,XDM先生唱着这首“亲切”的歌曲,一道猥琐题目的灵感在脑中出现了. 和C_SUNSHINE大神商量后,这道猥琐的题目终于出现在本次试题上了 ...

  9. LightOj 1221 - Travel Company(spfa判负环)

    1221 - Travel Company PDF (English) Statistics problem=1221" style="color:rgb(79,107,114)& ...

随机推荐

  1. python多线程创建与使用(转)

    原文:http://codingpy.com/article/python-201-a-tutorial-on-threads/ 创建多线程 创建多线程主要有2种方式. 使用threading.Thr ...

  2. 私有云搭建:树莓派+kodexplorer可道云,几步搞定!

    目前蒲公英异地组网则是推出了树莓派1.0软件客户端.无需公网IP!简单60秒设置!轻松远程访问树莓派!实现远程登录.远程配置.远程访问服务.传输数据等等操作.例如:蒲公英树莓派1.0软件客户端+可道云 ...

  3. Codeforces70 | Codeforces Beta Round #64 | 瞎讲报告

    目录 前言 正文 A B C D E 前言 这个毒瘤的517 放了Div1 然后D题是昨天讲的动态凸包(啊喂!我还没来的及去写 结果自己想的是二分凸包 (当然没有写出来 写完前两题之后就愉快地弃疗 C ...

  4. AutoResetEvent 方法名称设计缺陷

    这个类和方法,让人乍一读是读不明白的.不能通过方法名称明白其含义.所以它的方法名称设计是欠考虑. 应该类似于这样: public static class MyAutoResetEvent { pub ...

  5. scrapy笔记集合

    细读http://scrapy-chs.readthedocs.io/zh_CN/latest/index.html 目录 Scrapy介绍 安装 基本命令 项目结构以及爬虫应用介绍 简单使用示例 选 ...

  6. 让CentOS在同一个窗口打开文件夹

    http://www.linuxidc.com/Linux/2010-04/25756.htm

  7. 必应词典手机版(IOS版)与有道词典(IOS版)之软件分析【功能篇】【用户体验篇】

    1.序言: 随着手机功能的不断更新和推广,手机应用市场的竞争变得愈发激烈.这次我们选择必应词典和有道词典的苹果客户端作对比,进一步分析这两款词典的客户端在功能和用户体验方面的利弊.这次测评的主要评测人 ...

  8. Scrum Meeting 报告

    Scrum Meeting 报告 ----团队项目所需时间估计以及任务分配 由于能力有限,我们还不能构架好一个大框架.但是初步可以完成任务的流程和分配.任务所需要的具体实现可以参看<学霸系统的N ...

  9. VMware上配置DPDK环境并运行实例程序

    1. 在虚拟机VMware上配置环境 VMware安装:http://www.zdfans.com/html/5928.html Ubuntu:https://www.ubuntu.com/downl ...

  10. 学习总结:jQuery插件开发模式和结构

    学习博客链接: ①https://www.cnblogs.com/cyStyle/ ② https://www.cnblogs.com/chengyunshen/p/7277305.html ③ ht ...