Netty源码分析第2章(NioEventLoop)---->第7节: 处理IO事件
Netty源码分析第二章: NioEventLoop
第七节:处理IO事件
上一小节我们了解了执行select()操作的相关逻辑, 这一小节我们继续学习select()之后, 轮询到io事件的相关逻辑:
回到NioEventLoop的run()方法:
protected void run() {
for (;;) {
try {
switch (selectStrategy.calculateStrategy(selectNowSupplier, hasTasks())) {
case SelectStrategy.CONTINUE:
continue;
case SelectStrategy.SELECT:
//轮询io事件(1)
select(wakenUp.getAndSet(false));
if (wakenUp.get()) {
selector.wakeup();
}
default:
}
cancelledKeys = 0;
needsToSelectAgain = false;
//默认是50
final int ioRatio = this.ioRatio;
if (ioRatio == 100) {
try {
processSelectedKeys();
} finally {
runAllTasks();
}
} else {
//记录下开始时间
final long ioStartTime = System.nanoTime();
try {
//处理轮询到的key(2)
processSelectedKeys();
} finally {
//计算耗时
final long ioTime = System.nanoTime() - ioStartTime;
//执行task(3)
runAllTasks(ioTime * (100 - ioRatio) / ioRatio);
}
}
} catch (Throwable t) {
handleLoopException(t);
}
//代码省略
}
}
我们首先看 if (ioRatio == 100) 这个判断, ioRatio主要是用来控制processSelectedKeys()方法执行时间和任务队列执行时间的比例, 其中ioRatio默认是50, 所以会走到下一步else
首先通过 final long ioStartTime = System.nanoTime() 记录下开始时间, 再通过processSelectedKeys()方法处理轮询到的key
我们跟到processSelectedKeys()方法中:
private void processSelectedKeys() {
if (selectedKeys != null) {
//flip()方法会直接返回key的数组
processSelectedKeysOptimized(selectedKeys.flip());
} else {
processSelectedKeysPlain(selector.selectedKeys());
}
}
我们知道selector通过netty优化之后, 会初始化 selectedKeys这个属性, 所以这个属性不为空就会走到 processSelectedKeysOptimized(selectedKeys.flip()) 方法, 这个方法就是对应优化过的selector进行操作的
如果是非优化的selector, 则会进入 processSelectedKeysPlain(selector.selectedKeys()) 方法
selectedKeys.flip()为selectedKey中绑定的数组, 我们之前小节讲过selectedKeys其实是通过数组存储的, 所以经过select()操作如果监听到事件selectedKeys的数组就会有值
跟进到processSelectedKeysOptimized(selectedKeys.flip())方法中:
private void processSelectedKeysOptimized(SelectionKey[] selectedKeys) {
//通过for循环遍历数组
for (int i = 0;; i ++) {
//拿到当前的selectionKey
final SelectionKey k = selectedKeys[i];
if (k == null) {
break;
}
//将当前引用设置为null
selectedKeys[i] = null;
//获取channel(NioSeverSocketChannel)
final Object a = k.attachment();
//如果是AbstractNioChannel, 则调用processSelectedKey()方法处理io事件
if (a instanceof AbstractNioChannel) {
processSelectedKey(k, (AbstractNioChannel) a);
} else {
@SuppressWarnings("unchecked")
NioTask<SelectableChannel> task = (NioTask<SelectableChannel>) a;
processSelectedKey(k, task);
} //代码省略
}
}
首先通过for循环遍历数组中的每一个key, 获得key之后首先将数组中对应的下标清空, 因为selector不会自动清空, 这与我们使用原生selector时候, 通过遍历selector.selectedKeys()的set的时候, 拿到key之后要执行remove()是一个意思
之后获取注册在key上的channel, 判断channel是不是AbstractNioChannel, 通常情况都是AbstractNioChannel, 所以这里会执行 processSelectedKey(k, (AbstractNioChannel) a)
跟到processSelectedKey(k, (AbstractNioChannel) a)方法中:
private void processSelectedKey(SelectionKey k, AbstractNioChannel ch) {
//获取到channel中的unsafe
final AbstractNioChannel.NioUnsafe unsafe = ch.unsafe();
//如果这个key不是合法的, 说明这个channel可能有问题
if (!k.isValid()) {
//代码省略
}
try {
//如果是合法的, 拿到key的io事件
int readyOps = k.readyOps();
//链接事件
if ((readyOps & SelectionKey.OP_CONNECT) != 0) {
int ops = k.interestOps();
ops &= ~SelectionKey.OP_CONNECT;
k.interestOps(ops);
unsafe.finishConnect();
}
//写事件
if ((readyOps & SelectionKey.OP_WRITE) != 0) {
ch.unsafe().forceFlush();
}
//读事件和接受链接事件
//如果当前NioEventLoop是work线程的话, 这里就是op_read事件
//如果是当前NioEventLoop是boss线程的话, 这里就是op_accept事件
if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) {
unsafe.read();
if (!ch.isOpen()) {
return;
}
}
} catch (CancelledKeyException ignored) {
unsafe.close(unsafe.voidPromise());
}
}
我们首先获取和channel绑定的unsafe, 之后拿到channel注册的事件
我们关注 if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) 这个判断, 这个判断相信注释上写的很明白, 如果当前NioEventLoop是work线程的话, 这里就是op_read事件, 如果是当前NioEventLoop是boss线程的话, 这里就是op_accept事件
然后会通过channel绑定的unsafe对象执行read()方法用于处理链接或者读写事件
以上就是NioEventLoop对io事件的处理过程, 有关read()方法执行逻辑, 会在以后的章节中详细剖析
Netty源码分析第2章(NioEventLoop)---->第7节: 处理IO事件的更多相关文章
- Netty源码分析第4章(pipeline)---->第4节: 传播inbound事件
Netty源码分析第四章: pipeline 第四节: 传播inbound事件 有关于inbound事件, 在概述中做过简单的介绍, 就是以自己为基准, 流向自己的事件, 比如最常见的channelR ...
- Netty源码分析第4章(pipeline)---->第5节: 传播outbound事件
Netty源码分析第五章: pipeline 第五节: 传播outBound事件 了解了inbound事件的传播过程, 对于学习outbound事件传输的流程, 也不会太困难 在我们业务代码中, 有可 ...
- Netty源码分析第4章(pipeline)---->第6节: 传播异常事件
Netty源码分析第四章: pipeline 第6节: 传播异常事件 讲完了inbound事件和outbound事件的传输流程, 这一小节剖析异常事件的传输流程 首先我们看一个最最简单的异常处理的场景 ...
- Netty源码分析第2章(NioEventLoop)---->第1节: NioEventLoopGroup之创建线程执行器
Netty源码分析第二章: NioEventLoop 概述: 通过上一章的学习, 我们了解了Server启动的大致流程, 有很多组件与模块并没有细讲, 从这个章开始, 我们开始详细剖析netty的各个 ...
- Netty源码分析第2章(NioEventLoop)---->第2节: NioEventLoopGroup之NioEventLoop的创建
Netty源码分析第二章: NioEventLoop 第二节: NioEventLoopGroup之NioEventLoop的创建 回到上一小节的MultithreadEventExecutorG ...
- Netty源码分析第2章(NioEventLoop)---->第3节: 初始化线程选择器
Netty源码分析第二章:NioEventLoop 第三节:初始化线程选择器 回到上一小节的MultithreadEventExecutorGroup类的构造方法: protected Multi ...
- Netty源码分析第2章(NioEventLoop)---->第4节: NioEventLoop线程的启动
Netty源码分析第二章: NioEventLoop 第四节: NioEventLoop线程的启动 之前的小节我们学习了NioEventLoop的创建以及线程分配器的初始化, 那么NioEvent ...
- Netty源码分析第2章(NioEventLoop)---->第5节: 优化selector
Netty源码分析第二章: NioEventLoop 第五节: 优化selector 在剖析selector轮询之前, 我们先讲解一下selector的创建过程 回顾之前的小节, 在创建NioEv ...
- Netty源码分析第2章(NioEventLoop)---->第6节: 执行select操作
Netty源码分析第二章: NioEventLoop 第六节: 执行select操作 分析完了selector的创建和优化的过程, 这一小节分析select相关操作 跟到跟到select操作的入口 ...
随机推荐
- jQuery事件处理
浏览器的事件模型 DOM第0级事件模型 Event实例 他的属性提供了关于当前正被处理的已触发事件的大量信息.这包括一些细节,比如在哪个元素上触发的事件.鼠标事件的坐标以及键盘事件中单击了哪个键. 事 ...
- 一个简单的统计问题(解决方案:Trie树)
题目如图 输入几个不重复的单词和几个前缀,分别统计出单词中包含前缀的个数. Trie树 这个题目用到了 Trie 树.它在百度百科中的定义如下:在计算机科学中,Trie,又称字典树.单词查找树 ...
- c++——对象的动态建立和释放(new 和delete)
3.8 对象的动态建立和释放 1 new和delete基本语法 1)在软件开发过程中,常常需要动态地分配和撤销内存空间,例如对动态链表中结点的插入与删除.在C语言中是利用库函数malloc和free来 ...
- 【转】ios开发证书,描述文件,bundle ID的关系
ios开发证书,描述文件,bundle ID的关系 苹果为了控制应用的开发与发布流程,制定了一套非常复杂的机制.这里面的关键词有:个人开发者账号,企业开发者账号,bundle ID,开发证书,发布 ...
- ZOJ 3992 One-Dimensional Maze(思维题)
L - One-Dimensional Maze Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%lld & % ...
- U盘安装咱中国人自己的操作系统UbuntuKylin14.04LST(超具体原创图文教程)
本文仅供參考,在准备级安装过程中出现的一切意外情况均与本文作者无关!原创教程转载请注明原转载地!系统简单介绍:UbuntuKylin 是Ubuntu官方认可的衍生版,其宗旨是创建一个Ubuntu的中文 ...
- C3P0与DBUtil配合实现DAO层的开发
写在前面:菜鸟拙见,望请纠正 一:为什么需要连接池 普通的JDBC数据库连接使用 DriverManager 来获取,每次向数据库建立连接的时候都要将 Connection 加载到内存中,需要数据库连 ...
- 解决:Cannot load ocl.dll library(error code 126). The ocil.dll library may be missing from the system
因为这两天在做将springboot 项目使用的数据库MySQL转换为Oracle数据库,所以在网上查找相关资料后开始使用 Convert-Mysql-to-Oracle4.0做转换: ...
- Linux学习笔记(第五章)
第五章-常用指令 下达指令: 1.[Tab] 2.man + (指令):显示操作说明 开头代号 man page 常用按键
- 基于 HTML5 WebGL 的计量站三维可视化监控系统 Web 组态工控应用
得益于 HTML5 WebGL 技术的成熟,从技术上对工控管理的可视化,数据可视化变得简单易行!完成对工控设备的管理效率,资源管理,风险管理等的大幅度提高,同时也对国家工业4.0计划作出有力响应! 如 ...