Day 34 黏包
一、什么是粘包
须知:只有TCP有粘包现象,UDP永远不会粘包
粘包不一定会发生
如果发生了:1.可能是在客户端已经粘了
2.客户端没有粘,可能是在服务端粘了
应用程序所看到的数据是一个整体,或说是一个流(stream),一条消息有多少字节对应用程序是不可见的,因此TCP协议是面向流的协议,这也是容易出现粘包问题的原因。(因为TCP是流式协议,不知道啥时候开始,啥时候结束)。而UDP是面向消息的协议,每个UDP段都是一条消息,应用程序必须以消息为单位提取数据,不能一次提取任意字节的数据,这一点和TCP是很不同的。怎样定义消息呢?可以认为对方一次性write/send的数据为一个消息,需要明白的是当对方send一条信息的时候,无论底层怎样分段分片,TCP协议层会把构成整条消息的数据段排序完成后才呈现在内核缓冲区。
所谓粘包问题主要还是因为接收方不知道消息之间的界限,不知道一次性提取多少字节的数据所造成的。
server side TCP
Client side Tcp
Server Side UDP
Client Side UDP
输出结果: 不会黏包 但是会报错
二、黏包的成因
TCP 协议中的数据传递
TCP 协议的拆包机制
当发送端缓冲区的长度大于网卡的MTU时,tcp会将这次发送的数据拆成几个数据包发送出去。
MTU是Maximum Transmission Unit的缩写。意思是网络上传送的最大数据包。MTU的单位是字节。 大部分网络设备的MTU都是1500。如果本机的MTU比网关的MTU大,大的数据包就会被拆开来传送,这样会产生很多数据包碎片,增加丢包率,降低网络速度。
TCP(transport control protocol,传输控制协议)是面向连接的,面向流的,提供高可靠性服务。
收发两端(客户端和服务器端)都要有一一成对的socket,因此,发送端为了将多个发往接收端的包,更有效的发到对方,使用了优化方法(Nagle算法),将多次间隔较小且数据量小的数据,合并成一个大的数据块,然后进行封包。
这样,接收端,就难于分辨出来了,必须提供科学的拆包机制。 即面向流的通信是无消息保护边界的。
对于空消息:tcp是基于数据流的,于是收发的消息不能为空,这就需要在客户端和服务端都添加空消息的处理机制,防止程序卡住,而udp是基于数据报的,即便是你输入的是空内容(直接回车),也可以被发送,udp协议会帮你封装上消息头发送过去。
可靠黏包的tcp协议:tcp的协议数据不会丢,没有收完包,下次接收,会继续上次继续接收,己端总是在收到ack时才会清除缓冲区内容。数据是可靠的,但是会粘包。 发送方缓存引起的黏包 服务器端
客户端
结果
总结
黏包现象只发生在tcp协议中:
1.从表面上看,黏包问题主要是因为发送方和接收方的缓存机制、tcp协议面向流通信的特点。
2.实际上,主要还是因为接收方不知道消息之间的界限,不知道一次性提取多少字节的数据所造成的
黏包的解决方案
解决方案一
问题的根源在于,接收端不知道发送端将要传送的字节流的长度,所以解决粘包的方法就是围绕,如何让发送端在发送数据前,把自己将要发送的字节流总大小让接收端知晓,然后接收端来一个死循环接收完所有数据。
Day 34 黏包的更多相关文章
- Linux tcp黏包解决方案
tcpip协议使用"流式"(套接字)进行数据的传输,就是说它保证数据的可达以及数据抵达的顺序,但并不保证数据是否在你接收的时候就到达,特别是为了提高效率,充分利用带宽,底层会使用缓 ...
- tcp传输黏包
tcp传输黏包 tcpip协议使用"流式"(套接字)进行数据的传输,就是说它保证数据的可达以及数据抵达的顺序,但并不保证数据是否在你接收的时候就到达,特别是为了提高效率,充分利用带 ...
- Python之黏包的解决
黏包的解决方案 发生黏包主要是因为接收者不知道发送者发送内容的长度,因为tcp协议是根据数据流的,计算机操作系统有缓存机制, 所以当出现连续发送或连续接收的时候,发送的长度和接收的长度不匹配的情况下就 ...
- 【TCP协议】(3)---TCP粘包黏包
[TCP协议](3)---TCP粘包黏包 有关TCP协议之前写过两篇博客: 1.[TCP协议](1)---TCP协议详解 2.[TCP协议](2)---TCP三次握手和四次挥手 一.TCP粘包.拆包图 ...
- Python网络编程之黏包问题
二.解决黏包问题 2.1 解决黏包方法1 计算消息实体的大小 服务端接受两次,一次时消息大小,二次是消息实体,解决消息实体黏包 客户端发送两次,一次是消息大小,一次是消息实体 在两次收发之间加入一次多 ...
- 黏包现象之udp
老师的博客:http://www.cnblogs.com/Eva-J/articles/8244551.html server端 import socket import subprocess ser ...
- 黏包现象之TCP
老师的博客:http://www.cnblogs.com/Eva-J/articles/8244551.html#_label5 server #_*_coding:gbk*_ from socket ...
- socket之黏包
一.黏包成因 1.tcp协议的拆包机制 当发送端缓冲区的长度大于网卡的MTU时,tcp会将这次发送的数据拆成几个数据包发送出去. MTU是Maximum Transmission Unit的缩写.意思 ...
- 缓冲区 subprocess 黏包
一.缓冲区 每个socket被创建以后,都会分配两个缓冲区,输入缓冲区和输出缓冲区,默认大小都为8k,可以通过getsocket()获取,暂时存放传输数据,防止程序在发送数据的时候卡组,提高代码运 ...
随机推荐
- Maven+eclipse快速入门
1.eclipse下载 在无外网情况下,无法通过eclipse自带的help-install new software输入url来获取maven插件,因此可以用集成了maven插件的免安装eclips ...
- 手机端图片预览和缩放js
转至:http://blog.sina.com.cn/s/blog_c342e3090102vcxu.html 1.手机端的图片选择和预览 <input type="file" ...
- Golang之http编程
Go原生支持http.import("net/http") Go的http服务性能和nginx比较接近 几行代码就可以实现一个web服务 服务端http package main ...
- loadrunner11--集合点(Rendezvous )菜单是灰色不能点击
新建场景的时候“Manual Scenario”下的check box不能选中,取消选中就好了.即Vuser不能以百分比的形式. 所以:集合点灰化有两种情况: 脚本没有添加集合点函数 场景中设置以Vu ...
- div添加滚动条常见属性
由于页面上的表里的末一列的内容太多,显示的内容不美观了,就想在这一列上加滚动条,在网上搜了一下,用div可以实现,感觉还不错,下面的是在网上查到的. 想在div里添加滚动条设置一下style就ok了 ...
- EPLAN 软件平台中的词“点“大全
1. 中断点(Interruption Point): 在原理图绘制时,如果当前绘图区域的空间不足,需要转到其它页面继续绘制,而这两页之间存在连续的“信息流“时,可以使用“中断点“来传递这种“ ...
- javabean为什么要实现序列化?
javabean为什么要实现序列化? 所谓的Serializable,就是java提供的通用数据保存和读取的接口.至于从什么地方读出来和保存到哪里去都被隐藏在函数参数的背后了.这样子,任何类型只要实现 ...
- 2018.10.01 NOIP模拟 卡牌游戏(贪心)
传送门 简单贪心题. 然而考试的时候失了智少讨论了一种情况导致gg. 实际上用到了二分图匹配的思想,L每次找到刚好比当前的牌小一点的出出去,看能匹配几个. 如何处理? 我们先考虑第一种比分策略. 我们 ...
- 2018.09.28 bzoj1563: [NOI2009]诗人小G(决策单调性优化dp)
传送门 决策单调性优化dp板子题. 感觉队列的写法比栈好写. 所谓决策单调性优化就是每次状态转移的决策都是在向前单调递增的. 所以我们用一个记录三元组(l,r,id)(l,r,id)(l,r,id)的 ...
- 2018.07.04 POJ 2398 Toy Storage(二分+简单计算几何)
Toy Storage Time Limit: 1000MS Memory Limit: 65536K Description Mom and dad have a problem: their ch ...