907. Sum of Subarray Minimums
Given an array of integers
A
, find the sum ofmin(B)
, whereB
ranges over every (contiguous) subarray ofA
.Since the answer may be large, return the answer modulo
10^9 + 7
.
Example 1:
Input: [3,1,2,4]
Output: 17
Explanation: Subarrays are [3], [1], [2], [4], [3,1], [1,2], [2,4], [3,1,2], [1,2,4], [3,1,2,4].
Minimums are 3, 1, 2, 4, 1, 1, 2, 1, 1, 1. Sum is 17.
Note:
1 <= A.length <= 30000
1 <= A[i] <= 30000
Approach #1: Monotone Stack. [Java]
class Solution {
public int sumSubarrayMins(int[] A) {
int n = A.length;
Stack<int[]> in_stk_p = new Stack<>(), in_stk_n = new Stack<>();
// left is for the distance to previous less element
// right is for the distance to next less element.
int[] left = new int[n], right = new int[n];
for (int i = 0; i < n; ++i) left[i] = i + 1;
for (int i = 0; i < n; ++i) right[i] = n - i; for (int i = 0; i < n; ++i) {
while (!in_stk_p.isEmpty() && in_stk_p.peek()[0] > A[i]) in_stk_p.pop();
left[i] = in_stk_p.isEmpty() ? i + 1 : i - in_stk_p.peek()[1];
in_stk_p.push(new int[] {A[i], i}); while (!in_stk_n.isEmpty() && in_stk_n.peek()[0] > A[i]) {
int[] x = in_stk_n.peek();
in_stk_n.pop();
right[x[1]] = i - x[1];
}
in_stk_n.push(new int[] {A[i], i});
} int res = 0, mod = (int)1e9 + 7;
for (int i = 0; i < n; ++i)
res = (res + A[i]*left[i]*right[i]) % mod; return res;
}
}
Analysis:
Before diving into the solution, we first introduce a very important stack type, which is called momotone stack.
What is monotonous increase stack?
Roughly spkeaking, the elements in the an monotonous increase stack keeps an increasing order.
The typical paradigm for monotonous increase stack:
for(int i = 0; i < A.size(); i++){
while(!in_stk.empty() && in_stk.top() > A[i]){
in_stk.pop();
}
in_stk.push(A[i]);
}.
What can monotonous increase stack do?
(1) find the previous less element of each element in a vector with O(n) time:
What is the previous less element of an element?
For example:
[3, 7, 8, 4]
The previous less element of 7 is 3.
The previous less element of 8 is 7.
The previous less element of 4 is 3.
There are no previous less element for 3.
For simplicity of notation, we use abbreviation PLE to denote Previous Less Element.
C++ code (by slitghly modifying the paradigm):
Instead of directly pushing the element itself, here for simplicity, we push the incex.
We do some record when the index is pushed into the stack.
// previous_less[i] = j means A[j] is the previous less element of A[i].
// previous_less[i] = -1 means there is no previous less element of A[i].
vector<int> previous_less(A.size(), -1);
for(int i = 0; i < A.size(); i++){
while(!in_stk.empty() && A[in_stk.top()] > A[i]){
in_stk.pop();
}
previous_less[i] = in_stk.empty()? -1: in_stk.top();
in_stk.push(i);
}
(2) find the next less element of each element in a vector with O(n) time:
What is the next less element of an element?
For example:
[3, 7, 8, 4]
The next less element of 8 is 4.
The next less element of 7 is 4.
There is no next less element for 3 and 4.
For simplicity of notation, we use abbreviation NLE to denote Next Less Element.
C++ code (by slighly modifying the paradigm):
We do some record when the index is poped out from the stack.
// next_less[i] = j means A[j] is the next less element of A[i].
// next_less[i] = -1 mean there is no next less element of A[i].
vector<int> previous_less(A.size(), -1);
for(int i = 0; i < A.size(); i++){
while(!in_stk.empty() && A[in_stk.top()] > A[i]){
auto x = in_stk.top(); in_stk.pop();
next_less[x] = i;
}
in_stk.push(i);
}
How can the monotonous increase stack be applied to this problem?
For example:
Consider the element 3 in the following vector:
[2, 9, 7, 8, 3, 4, 6, 1]
| |
the previous less the next less
element of 3 element of 3
After finding both NLE and PLE of 3, we can determine the distance between 3 and 2(prevous less), and the distance between 3 and 1(next less). In this example, the distance is 4 and 3 respectively.
How many subarray with 3 being its minimum value?
The answer is 4 * 3.
How much the element 3 contributes to the final answer?
It is 3 * (3 * 4).
What is the final answer?
Denote by left[i] the distance between element A[i] and its PLE.
Denote by right[i] the distance beween element A[i] and its NLE.
The final answer is:
sum(A[i] * left[i] * right[i])
Approach #2: Optimize [C++]
class Solution {
public:
int sumSubarrayMins(vector<int>& A) {
int res = 0, n = A.size(), mod = 1e9 + 7, j, k;
stack<int> s;
for (int i = 0; i <= n; ++i) {
while (!s.empty() && A[s.top()] > (i == n ? 0 : A[i])) {
j = s.top(), s.pop();
k = s.empty() ? -1 : s.top();
res = (res + A[j] * (i - j) * (j - k)) % mod;
}
s.push(i);
}
return res;
}
};
Analysis:
1. Here we record (A[i], i) in the stack. We can also only record index.
2. For left part and right part, the logic is same.
So for each, we used one stack and one pass.
This process can be optimized to one pass using one stack in total.
Reference:
https://docs.oracle.com/javase/7/docs/api/java/util/Stack.html
907. Sum of Subarray Minimums的更多相关文章
- [LeetCode] 907. Sum of Subarray Minimums 子数组最小值之和
Given an array of integers A, find the sum of min(B), where B ranges over every (contiguous) subarra ...
- 【leetcode】907. Sum of Subarray Minimums
题目如下: 解题思路:我的想法对于数组中任意一个元素,找出其左右两边最近的小于自己的元素.例如[1,3,2,4,5,1],元素2左边比自己小的元素是1,那么大于自己的区间就是[3],右边的区间就是[4 ...
- [Swift]LeetCode907. 子数组的最小值之和 | Sum of Subarray Minimums
Given an array of integers A, find the sum of min(B), where B ranges over every (contiguous) subarra ...
- 子数组最小值的总和 Sum of Subarray Minimums
2018-09-27 23:33:49 问题描述: 问题求解: 方法一.DP(MLE) 动态规划的想法应该是比较容易想到的解法了,因为非常的直观,但是本题的数据规模还是比较大的,如果直接使用动态规划, ...
- leetcode907 Sum of Subarray Minimums
思路: 对于每个数字A[i],使用单调栈找到A[i]作为最小值的所有区间数量,相乘并累加结果.时间复杂度O(n). 实现: class Solution { public: int sumSubarr ...
- LC 918. Maximum Sum Circular Subarray
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty ...
- 动态规划-Maximum Subarray-Maximum Sum Circular Subarray
2020-02-18 20:57:58 一.Maximum Subarray 经典的动态规划问题. 问题描述: 问题求解: public int maxSubArray(int[] nums) { i ...
- [Swift]LeetCode918. 环形子数组的最大和 | Maximum Sum Circular Subarray
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty ...
- Maximum Sum Circular Subarray LT918
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty ...
随机推荐
- jdeveloper基础教程(中文版)
jdeveloper基础教程(中文版) 程序员的基础教程:菜鸟程序员
- js手机号码正则表达式
function checkMobile(){ var sMobile = document.mobileform.mobile.value if(!(/^1[3|4|5|8][0-9]\d{4,8} ...
- [PHP]require include
- Legendre多项式
Legendre多项式 时间限制: 1 Sec 内存限制: 128 MB 题目描述 Legendre多项式的递归公式
- 使用phpExcel导出excel文件
function export($log_list_export) { require "../include/phpexcel/PHPExcel.php"; require &q ...
- 使用kindeditor 4.1.7 编辑器 注意事项,上传图片失败 问题 ,
<script charset="utf-8" src="editor/kindeditor.js"></script> <scr ...
- hadoop 学习(二)ubuntu hadoop 2.7.0 伪分部安装
本篇是基于上一篇,ubuntu 安装hadoop单机版基础上的 1.配置core-site.xml /usr/local/hadoop/etc/hadoop/core-site.xml 包含了hado ...
- 转录组差异表达分析工具Ballgown
Ballgown是分析转录组差异表达的R包. 软件安装: 运行R, source(“http://bioconductor.org/biocLite.R”) biocLite(“ballgown”) ...
- 前端之JavaScript笔记2
一 数组对象 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UT ...
- 关于EmitMapper,映射配置
public static T Snapshoot<T>(this XtraForm form, T obj) { var config = new DefaultMapConfig(); ...