Aircraft

Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 980    Accepted Submission(s): 228

Problem Description
You are playing a flying game.

In the game, player controls an aircraft in a 2D-space.

The mission is to drive the craft from starting point to terminal point.

The craft needs wireless signal to move.

A number of devices are placed in the 2D-space, spreading signal.

For a device Di, it has a signal radius -- Ri.

When the distance between the craft and Di is shorter or equal to Ri, it(the craft) gets Di's wireless signal.

Now you need to tell me the shortest path from starting point to terminal point.
 
Input
The first line of the input file is a single integer T.

The rest of the test file contains T blocks.

Each block starts with an integer n, followed by n devices given as (xi, yi, Ri).

(xi, yi) is position of Di, and Ri is the radius of its signal range.

The first point is the starting point.

The last point is the terminal point.

T <= 25;

2 <= n <= 20 for most cases;

20 < n <= 25 for several cases, completely random generated.

-1000 <= xi, yi <= 1000 , 1 <= ri <= 1000.

All are integers.
 
Output
For each case, Output "No such path." if the craft can't get to the terminal point.

Otherwise, output a float number, correct the result to 4 decimal places.(as shown in the sample output)
 
Sample Input
2
2
0 0 1
2 0 1
2
0 0 1
4 1 2
 
Sample Output
Case 1: 2.0000
Case 2: No such path.
 

给定n个圆,求从第一个圆到最后一个圆的最短路,要求路径全然包括在圆的覆盖下。

一開始以为圆与圆之间的处理必须经过圆心。无数的wa,苦苦找不到问题。一神牛提供了一组强大的数据,最终发现了问题。

把圆与圆相交全部交点找出来,排序,去重。然后枚举全部线段,找出线段与圆的全部交点,排序。去重,然后枚举每一段线段是否被某一个圆覆盖。假设不满足,直接

跳出,然后就是最短路的处理,连最短路也不会写了,直接堆了一个spfa,300+行代码,总算1Y了,泪目呀。。。。

代码:

/* ***********************************************
Author :rabbit
Created Time :2014/7/3 22:46:38
File Name :2.cpp
************************************************ */
#pragma comment(linker, "/STACK:102400000,102400000")
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <sstream>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <string>
#include <time.h>
#include <math.h>
#include <queue>
#include <stack>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define eps 1e-6
#define pi acos(-1.0)
typedef long long ll;
int dcmp(double x){
if(fabs(x)<eps)return 0;
return x>0?1:-1;
}
struct Point{
double x,y;
Point(double _x=0,double _y=0){
x=_x;y=_y;
}
};
Point operator + (Point a,Point b){
return Point(a.x+b.x,a.y+b.y);
}
Point operator - (Point a, Point b){
return Point(a.x-b.x,a.y-b.y);
}
Point operator * (Point a,double p){
return Point(a.x*p,a.y*p);
}
Point operator / (Point a,double p){
return Point(a.x/p,a.y/p);
}
bool operator < (const Point &a,const Point &b){
return a.x<b.x||(a.x==b.x&&a.y<b.y);
}
bool operator == (const Point &a,const Point &b){
return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0;
}
double Dot(Point a, Point b){
return a.x*b.x+a.y*b.y;
}
double Length(Point a){
return sqrt(Dot(a,a));
}
double Angle(Point a,Point b){
return acos(Dot(a,b)/Length(a)/Length(b));
}
double angle(Point a){
return atan2(a.y,a.x);
}
double Cross(Point a,Point b){
return a.x*b.y-a.y*b.x;
}
Point vecnit(Point x){
return x/Length(x);
}
Point normal(Point x){
return Point(-x.y,x.x)/Length(x);
}
Point Rotate(Point a,double rad){
return Point(a.x*cos(rad)-a.y*sin(rad),a.x*sin(rad)+a.y*cos(rad));
}
Point GetLineIntersection(Point p,Point v,Point q,Point w){
Point u=p-q;
double t=Cross(w,u)/Cross(v,w);
return p+v*t;
}
struct Line{
Point p,v;
double ang;
Line(){};
Line(Point _p,Point _v):p(_p),v(_v){
ang=atan2(v.y,v.x);
}
Point point(double a){
return p+(v*a);
}
bool operator < (const Line &L)const{
return ang<L.ang;
}
};
Point GetLineIntersection(Line a,Line b){
return GetLineIntersection(a.p,a.v,b.p,b.v);
}
bool OnLeft(const Line &L,const Point &p){
return Cross(L.v,p-L.p)>=0;
}
vector<Point> HPI(vector<Line> L){
int n=L.size();
sort(L.begin(),L.end());
int first,last;
vector<Point> p(n);
vector<Line> q(n);
vector<Point> ans;
q[last=first=0]=L[0];
for(int i=1;i<n;i++){
while(first<last&&!OnLeft(L[i],p[last-1]))last--;
while(first<last&&!OnLeft(L[i],p[first]))first++;
q[++last]=L[i];
if(fabs(Cross(q[last].v,q[last-1].v))<eps){
last--;
if(OnLeft(q[last],L[i].p))q[last]=L[i];
}
if(first<last)p[last-1]=GetLineIntersection(q[last-1],q[last]);
}
while(first<last&&!OnLeft(q[first],p[last-1]))last--;
if(last-first<=1)return ans;
p[last]=GetLineIntersection(q[last],q[first]);
for(int i=first;i<=last;i++)ans.push_back(p[i]);
return ans;
}
double getarea(vector<Point> p){
double ans=0;
int n=p.size();
for(int i=0;i<n;i++)
ans+=Cross(p[i],p[(i+1)%n]);
return fabs(ans)/2;
}
bool getdir(vector<Point> p){
double ans=0;
int n=p.size();
for(int i=0;i<n;i++)
ans+=Cross(p[i],p[(i+1)%n]);
if(dcmp(ans)>0)return 1;
return 0;
}
struct Circle{
Point c;
double r;
Circle(){}
Circle(Point _c,double _r):c(_c),r(_r){}
Point point(double a){
return Point(c.x+cos(a)*r,c.y+sin(a)*r);
}
};
bool OnSegment(Point p,Point a1,Point a2){
return dcmp(Cross(a1-p,a2-p))==0&&dcmp(Dot(a1-p,a2-p))<=0;
}
int getSegCircleIntersection(Line L, Circle C, Point* sol)
{
Point nor = normal(L.v);
Line pl = Line(C.c, nor);
Point ip = GetLineIntersection(pl, L);
double dis = Length(ip - C.c);
if (dcmp(dis - C.r) > 0) return 0;
Point dxy = vecnit(L.v) * sqrt(C.r*C.r-dis*dis);
int ret = 0;
sol[ret] = ip + dxy;
if (OnSegment(sol[ret], L.p, L.point(1))) ret++;
sol[ret] = ip - dxy;
if (OnSegment(sol[ret], L.p, L.point(1))) ret++;
return ret;
}
int getCircleCircleIntersection(Circle c1,Circle c2,vector<Point> &sol){
double d=Length(c1.c-c2.c);
if(dcmp(d)==0){
if(dcmp(c1.r-c2.r)==0)return -1;
return 0;
}
if(dcmp(c1.r+c2.r-d)<0)return 0;
if(dcmp(fabs(c1.r-c2.r)-d)>0)return 0;
double a=angle(c2.c-c1.c);
double da=acos((c1.r*c1.r+d*d-c2.r*c2.r)/(2*c1.r*d));
Point p1=c1.point(a-da),p2=c1.point(a+da);
sol.push_back(p1);
if(p1==p2)return 1;
sol.push_back(p2);
return 2;
}
bool InCircle(Point x,Circle c){
return dcmp(c.r-Length(c.c-x))>=0;
}
Point pp[50],p1[10010];
double R[50],dist[1010][1010],dis[1010];
int tot;
int head[1010],tol,vis[1910];
struct Edge{
int next,to;
double val;
}edge[1001000];
void addedge(int u,int v,double val){
edge[tol].to=v;
edge[tol].next=head[u];
edge[tol].val=val;
head[u]=tol++;
}
double spfa(int s,int t){
memset(vis,0,sizeof(vis));queue<int> q;
for(int i=0;i<tot;i++){
if(i==s){
vis[i]=1;
dis[i]=0;
q.push(i);
}
else dis[i]=INF;
}
while(!q.empty()){
int u=q.front();
q.pop();
vis[u]=0;
for(int i=head[u];i!=-1;i=edge[i].next){
int v=edge[i].to;
if(dis[v]>dis[u]+edge[i].val){
dis[v]=dis[u]+edge[i].val;
if(vis[v]==0){
vis[v]=1;
q.push(v);
}
}
}
}
// cout<<"gg: "<<endl;
//cout<<"tot="<<tot<<endl;
// for(int i=0;i<tot;i++)cout<<dis[i]<<" ";cout<<endl;
if(dis[t]<INF)return dis[t];
return -1;
}
int main()
{
int T,n;
// freopen("data.in","r",stdin);
// freopen("data.out","w",stdout);
scanf("%d",&T);
for(int t=1;t<=T;t++){
scanf("%d",&n);
for(int i=0;i<n;i++)
scanf("%lf%lf%lf",&pp[i].x,&pp[i].y,&R[i]);
printf("Case %d: ",t);
tot=0;
for(int i=0;i<n;i++)p1[tot++]=pp[i];
for(int i=0;i<n;i++)
for(int j=i+1;j<n;j++){
vector<Point> sol;
int ret=getCircleCircleIntersection(Circle(pp[i],R[i]),Circle(pp[j],R[j]),sol);
for(int k=0;k<ret;k++)
p1[tot++]=sol[k];
}
sort(p1,p1+tot);
tot=unique(p1,p1+tot)-p1;
for(int i=0;i<1000;i++){
dist[i][i]=0;
for(int j=i+1;j<1000;j++)
dist[i][j]=dist[j][i]=INF;
}
for(int i=0;i<tot;i++)
for(int j=i+1;j<tot;j++){
Point tt[100],sol[3];
int hh=0;
for(int k=0;k<n;k++){
int ret=getSegCircleIntersection(Line(p1[i],p1[j]-p1[i]),Circle(pp[k],R[k]),sol);
for(int d=0;d<ret;d++)
tt[hh++]=sol[d];
}
tt[hh++]=p1[i];
tt[hh++]=p1[j];
sort(tt,tt+hh);
hh=unique(tt,tt+hh)-tt;
int ff=1;
for(int d=0;d<hh-1;d++){
int flag=0;
for(int e=0;e<n;e++)
if(InCircle(tt[d],Circle(pp[e],R[e]))&&InCircle(tt[d+1],Circle(pp[e],R[e]))){
flag=1;break;
}
if(!flag){
ff=0;break;
}
}
if(ff)dist[i][j]=dist[j][i]=Length(p1[i]-p1[j]);
}
// cout<<"tot="<<tot<<endl;
// for(int i=0;i<tot;i++)cout<<p1[i].x<<" "<<p1[i].y<<endl;
// for(int i=0;i<tot;i++){
// for(int j=0;j<tot;j++)cout<<dist[i][j]<<" ";
// cout<<endl;
// }
int start,end;
for(int i=0;i<tot;i++){
if(p1[i]==pp[0])start=i;
if(p1[i]==pp[n-1])end=i;
}
// cout<<"han "<<start<<" "<<end<<endl;
memset(head,-1,sizeof(head));tol=0;
for(int i=0;i<tot;i++)
for(int j=i+1;j<tot;j++)
if(dist[i][j]<INF){
addedge(i,j,dist[i][j]);
addedge(j,i,dist[i][j]);
}
// cout<<"tol="<<tol<<endl;
double ans=spfa(start,end);
if(ans==-1)puts("No such path.");
else printf("%.4f\n",ans);
}
return 0;
}

HDU 4063 线段与圆相交+最短路的更多相关文章

  1. hdu4063(圆与圆交+线段与圆交+最短路)

    写几何题总是提心吊胆.精度问题真心吓人. 其实思路挺简单的一道题,真是什么算法和几何double搞到一块,心里就虚虚的. 思路:求出所有圆之间的交点,然后用这些交点跑一遍最短路就可以了. Aircra ...

  2. hdu 5120 (求两圆相交的面积

    题意:告诉你两个圆环,求圆环相交的面积. /* gyt Live up to every day */ #include<cstdio> #include<cmath> #in ...

  3. luogu 1354 房间最短路问题 线段与直线相交 最短路

    题目链接 题目描述 在一个长宽均为10,入口出口分别为(0,5).(10,5)的房间里,有几堵墙,每堵墙上有两个缺口,求入口到出口的最短路经. 输入输出格式 输入格式: 第一排为n(n<=20) ...

  4. HDU 4063 Aircraft --几何,最短路

    题意: 给一些圆,要求从第一个圆的圆心走到最后一个圆的圆心,中间路径必须在某个圆内,求最短路径的长度. 解法: 易知要保持在圆内且路径最短,走两圆相交的点能使路径尽量短,所以我们找出所有的两圆相交的点 ...

  5. HDU 3264 Open-air shopping malls (计算几何-圆相交面积)

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=3264 题意:给你n个圆,坐标和半径,然后要在这n个圆的圆心画一个大圆,大圆与这n个圆相交的面积必须大于等 ...

  6. POJ_1556_The Doors_判断线段相交+最短路

    POJ_1556_The Doors_判断线段相交+最短路 Description You are to find the length of the shortest path through a ...

  7. 【BZOJ 1033】 [ZJOI2008]杀蚂蚁antbuster(判断线段是否和圆相交)

    [题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1033 [题意] https://www.zybuluo.com/Jerusalem/n ...

  8. HDU 1558 Segment set (并查集+线段非规范相交)

    题目链接 题意 : 如果两个线段相交就属于同一集合,查询某条线段所属集合有多少线段,输出. 思路 : 先判断与其他线段是否相交,然后合并. #include <cstdio> #inclu ...

  9. HDU 3467 (求五个圆相交面积) Song of the Siren

    还没开始写题解我就已经内牛满面了,从晚饭搞到现在,WA得我都快哭了呢 题意: 在DotA中,你现在1V5,但是你的英雄有一个半径为r的眩晕技能,已知敌方五个英雄的坐标,问能否将该技能投放到一个合适的位 ...

随机推荐

  1. GoLang中如何使用多参数属性传参

    我们常常因为传入的参数不确定而头疼不已,golang 为我们提供了接入多值参数用于解决这个问题.但是一般我们直接写已知代码即所有的值都知道一个一个塞进去就好了,但是绝大部分我们是得到用户的大量输入想通 ...

  2. 你使用 Web 平台安装程序命令行工具

    你使用 Web 平台安装程序命令行工具 获取的软件由其所有者授权给你.Microsoft 未授予你第三方软件的任何权利.已成功加载主源: https://go.microsoft.com/?linki ...

  3. JavaScript高级程序设计(第3版)学习笔记·第8章——浏览器对象模型BOM

    转自:http://www.shaoqun.com/a/43768.aspx 访问和操作浏览器窗口的模型称为浏览器对象模型BOM(Browser Object Model),但习惯上是把所有针对浏览器 ...

  4. Swift学习笔记(十五)——程序猿浪漫之用Swift+Unicode说我爱你

    程序猿经常被觉得是呆板.宅,不解风情的一帮人.可是有时候.我们也能够使用自己的拿手本领来表现我们的浪漫. 因为Swift语言是支持Unicode编码的,而Unicode最新已经支持emoji(绘文字) ...

  5. Phpcms之L()函数

    .phpcms\languages\zh-cn    中文语言包2.phpcms\languages\en    英文语言包 phpcms v9语言包建立  在phpcms v9二次开发之模型类的应用 ...

  6. 设置TreeView背景色

    以下为在Csdn上找到的Treeview资源管理器代码,怎样改变其背景色?用:SendMessage SysTreeWindow,TVM_SETBKCOLOR,0,byval RGB(255,255, ...

  7. spring常用注解以IOC理解

    使用注解来构造IoC容器 用注解来向Spring容器注册Bean.需要在applicationContext.xml中注册<context:component-scan base-package ...

  8. html字符转义

    常用表: No. 文字表記 10進表記 16進表記 文字   Comment 001 " " " """   quotation mark ...

  9. 【Linux】文件描述符与重定向

    重定向符号 符号 描述 > 输出重定向到一个文件或设备 覆盖原来的文件 >! 输出重定向到一个文件或设备 强制覆盖原来的文件 >> 输出重定向到一个文件或设备 追加原来的文件 ...

  10. Python之os.walk()

    #http://www.cnblogs.com/bluescorpio/archive/2009/10/21/1587493.html os.walk() 返回结果:可以得到一个(dirpath, d ...