Hadoop学习之路(十五)MapReduce的多Job串联和全局计数器
MapReduce 多 Job 串联
需求
一个稍复杂点的处理逻辑往往需要多个 MapReduce 程序串联处理,多 job 的串联可以借助 MapReduce 框架的 JobControl 实现
实例
以下有两个 MapReduce 任务,分别是 Flow 的 SumMR 和 SortMR,其中有依赖关系:SumMR 的输出是 SortMR 的输入,所以 SortMR 的启动得在 SumMR 完成之后
Configuration conf1 = new Configuration();
Configuration conf2 = new Configuration(); Job job1 = Job.getInstance(conf1);
Job job2 = Job.getInstance(conf2); job1.setJarByClass(MRScore3.class);
job1.setMapperClass(MRMapper3_1.class);
//job.setReducerClass(ScoreReducer3.class); job1.setMapOutputKeyClass(IntWritable.class);
job1.setMapOutputValueClass(StudentBean.class);
job1.setOutputKeyClass(IntWritable.class);
job1.setOutputValueClass(StudentBean.class); job1.setPartitionerClass(CoursePartitioner2.class); job1.setNumReduceTasks(4); Path inputPath = new Path("D:\\MR\\hw\\work3\\input");
Path outputPath = new Path("D:\\MR\\hw\\work3\\output_hw3_1"); FileInputFormat.setInputPaths(job1, inputPath);
FileOutputFormat.setOutputPath(job1, outputPath); job2.setMapperClass(MRMapper3_2.class);
job2.setReducerClass(MRReducer3_2.class); job2.setMapOutputKeyClass(IntWritable.class);
job2.setMapOutputValueClass(StudentBean.class);
job2.setOutputKeyClass(StudentBean.class);
job2.setOutputValueClass(NullWritable.class); Path inputPath2 = new Path("D:\\MR\\hw\\work3\\output_hw3_1");
Path outputPath2 = new Path("D:\\MR\\hw\\work3\\output_hw3_end"); FileInputFormat.setInputPaths(job2, inputPath2);
FileOutputFormat.setOutputPath(job2, outputPath2); JobControl control = new JobControl("Score3"); ControlledJob aJob = new ControlledJob(job1.getConfiguration());
ControlledJob bJob = new ControlledJob(job2.getConfiguration());
// 设置作业依赖关系
bJob.addDependingJob(aJob); control.addJob(aJob);
control.addJob(bJob); Thread thread = new Thread(control);
thread.start(); while(!control.allFinished()) {
thread.sleep(1000);
}
System.exit(0);
MapReduce 全局计数器
MapReduce计数器是什么?
计数器是用来记录job的执行进度和状态的。它的作用可以理解为日志。我们可以在程序的某个位置插入计数器,记录数据或者进度的变化情况。
MapReduce计数器能做什么?
MapReduce 计数器(Counter)为我们提供一个窗口,用于观察 MapReduce Job 运行期的各种细节数据。对MapReduce性能调优很有帮助,MapReduce性能优化的评估大部分都是基于这些 Counter 的数值表现出来的。
MapReduce 都有哪些内置计数器?
MapReduce 自带了许多默认Counter,现在我们来分析这些默认 Counter 的含义,方便大家观察 Job 结果,如输入的字节数、输出的字节数、Map端输入/输出的字节数和条数、Reduce端的输入/输出的字节数和条数等。下面我们只需了解这些内置计数器,知道计数器组名称(groupName)和计数器名称(counterName),以后使用计数器会查找groupName和counterName即可。
1、任务计数器
在任务执行过程中,任务计数器采集任务的相关信息,每个作业的所有任务的结果会被聚集起来。例如,MAP_INPUT_RECORDS 计数器统计每个map任务输入记录的总数,并在一个作业的所有map任务上进行聚集,使得最终数字是整个作业的所有输入记录的总数。任务计数器由其关联任务维护,并定期发送给TaskTracker,再由TaskTracker发送给 JobTracker。因此,计数器能够被全局地聚集。下面我们分别了解各种任务计数器。
1)MapReduce 任务计数器
MapReduce 任务计数器的 groupName为org.apache.hadoop.mapreduce.TaskCounter,它包含的计数器如下表所示
计数器名称 |
说明 |
map 输入的记录数(MAP_INPUT_RECORDS) |
作业中所有 map 已处理的输入记录数。每次 RecorderReader 读到一条记录并将其传给 map 的 map() 函数时,该计数器的值增加。 |
map 跳过的记录数(MAP_SKIPPED_RECORDS) |
作业中所有 map 跳过的输入记录数。 |
map 输入的字节数(MAP_INPUT_BYTES) |
作业中所有 map 已处理的未经压缩的输入数据的字节数。每次 RecorderReader 读到一条记录并 将其传给 map 的 map() 函数时,该计数器的值增加 |
分片split的原始字节数(SPLIT_RAW_BYTES) |
由 map 读取的输入-分片对象的字节数。这些对象描述分片元数据(文件的位移和长度),而不是分片的数据自身,因此总规模是小的 |
map 输出的记录数(MAP_OUTPUT_RECORDS) |
作业中所有 map 产生的 map 输出记录数。每次某一个 map 的Context 调用 write() 方法时,该计数器的值增加 |
map 输出的字节数(MAP_OUTPUT_BYTES) |
作业中所有 map 产生的 未经压缩的输出数据的字节数。每次某一个 map 的 Context 调用 write() 方法时,该计数器的值增加。 |
map 输出的物化字节数(MAP_OUTPUT_MATERIALIZED_BYTES) |
map 输出后确实写到磁盘上的字节数;若 map 输出压缩功能被启用,则会在计数器值上反映出来 |
combine 输入的记录数(COMBINE_INPUT_RECORDS) |
作业中所有 Combiner(如果有)已处理的输入记录数。Combiner 的迭代器每次读一个值,该计数器的值增加。 |
combine 输出的记录数(COMBINE_OUTPUT_RECORDS) |
作业中所有 Combiner(如果有)已产生的输出记录数。每当一个 Combiner 的 Context 调用 write() 方法时,该计数器的值增加。 |
reduce 输入的组(REDUCE_INPUT_GROUPS) |
作业中所有 reducer 已经处理的不同的码分组的个数。每当某一个 reducer 的 reduce() 被调用时,该计数器的值增加。 |
reduce 输入的记录数(REDUCE_INPUT_RECORDS) |
作业中所有 reducer 已经处理的输入记录的个数。每当某个 reducer 的迭代器读一个值时,该计数器的值增加。如果所有 reducer 已经处理完所有输入, 则该计数器的值与计数器 “map 输出的记录” 的值相同 |
reduce 输出的记录数(REDUCE_OUTPUT_RECORDS) |
作业中所有 map 已经产生的 reduce 输出记录数。每当某一个 reducer 的 Context 调用 write() 方法时,该计数器的值增加。 |
reduce 跳过的组数(REDUCE_SKIPPED_GROUPS) |
作业中所有 reducer 已经跳过的不同的码分组的个数。 |
reduce 跳过的记录数(REDUCE_SKIPPED_RECORDS) |
作业中所有 reducer 已经跳过输入记录数。 |
reduce 经过 shuffle 的字节数(REDUCE_SHUFFLE_BYTES) |
shuffle 将 map 的输出数据复制到 reducer 中的字节数。 |
溢出的记录数(SPILLED_RECORDS) |
作业中所有 map和reduce 任务溢出到磁盘的记录数 |
CPU 毫秒(CPU_MILLISECONDS) |
总计的 CPU 时间,以毫秒为单位,由/proc/cpuinfo获取 |
物理内存字节数(PHYSICAL_MEMORY_BYTES) |
一个任务所用物理内存的字节数,由/proc/cpuinfo获取 |
虚拟内存字节数(VIRTUAL_MEMORY_BYTES) |
一个任务所用虚拟内存的字节数,由/proc/cpuinfo获取 |
有效的堆字节数(COMMITTED_HEAP_BYTES) |
在 JVM 中的总有效内存量(以字节为单位),可由Runtime().getRuntime().totaoMemory()获取。 |
GC 运行时间毫秒数(GC_TIME_MILLIS) |
在任务执行过程中,垃圾收集器(garbage collection)花费的时间(以毫秒为单位), 可由 GarbageCollector MXBean.getCollectionTime()获取;该计数器并未出现在1.x版本中。 |
由 shuffle 传输的 map 输出数(SHUFFLED_MAPS) |
有 shuffle 传输到 reducer 的 map 输出文件数。 |
失败的 shuffle 数(SHUFFLE_MAPS) |
在 shuffle 过程中,发生拷贝错误的 map 输出文件数,该计数器并没有包含在 1.x 版本中。 |
被合并的 map 输出数 |
在 shuffle 过程中,在 reduce 端被合并的 map 输出文件数,该计数器没有包含在 1.x 版本中。 |
2)文件系统计数器
文件系统计数器的 groupName为org.apache.hadoop.mapreduce.FileSystemCounter,它包含的计数器如下表所示
计数器名称 |
说明 |
文件系统的读字节数(BYTES_READ) |
由 map 和 reduce 等任务在各个文件系统中读取的字节数,各个文件系统分别对应一个计数器,可以是 Local、HDFS、S3和KFS等。 |
文件系统的写字节数(BYTES_WRITTEN) |
由 map 和 reduce 等任务在各个文件系统中写的字节数。 |
3)FileInputFormat 计数器
FileInputFormat 计数器的 groupName为org.apache.hadoop.mapreduce.lib.input.FileInputFormatCounter,它包含的计数器如下表所示,计数器名称列的括号()内容即为counterName
计数器名称 |
说明 |
读取的字节数(BYTES_READ) |
由 map 任务通过 FileInputFormat 读取的字节数。 |
4)FileOutputFormat 计数器
FileOutputFormat 计数器的 groupName为org.apache.hadoop.mapreduce.lib.input.FileOutputFormatCounter,它包含的计数器如下表所示
计数器名称 |
说明 |
写的字节数(BYTES_WRITTEN) |
由 map 任务(针对仅含 map 的作业)或者 reduce 任务通过 FileOutputFormat 写的字节数。 |
2、作业计数器
作业计数器由 JobTracker(或者 YARN)维护,因此无需在网络间传输数据,这一点与包括 “用户定义的计数器” 在内的其它计数器不同。这些计数器都是作业级别的统计量,其值不会随着任务运行而改变。 作业计数器计数器的 groupName为org.apache.hadoop.mapreduce.JobCounter,它包含的计数器如下表所示
计数器名称 |
说明 |
启用的map任务数(TOTAL_LAUNCHED_MAPS) |
启动的map任务数,包括以“推测执行” 方式启动的任务。 |
启用的 reduce 任务数(TOTAL_LAUNCHED_REDUCES) |
启动的reduce任务数,包括以“推测执行” 方式启动的任务。 |
失败的map任务数(NUM_FAILED_MAPS) |
失败的map任务数。 |
失败的 reduce 任务数(NUM_FAILED_REDUCES) |
失败的reduce任务数。 |
数据本地化的 map 任务数(DATA_LOCAL_MAPS) |
与输入数据在同一节点的 map 任务数。 |
机架本地化的 map 任务数(RACK_LOCAL_MAPS) |
与输入数据在同一机架范围内、但不在同一节点上的 map 任务数。 |
其它本地化的 map 任务数(OTHER_LOCAL_MAPS) |
与输入数据不在同一机架范围内的 map 任务数。由于机架之间的宽带资源相对较少,Hadoop 会尽量让 map 任务靠近输入数据执行,因此该计数器值一般比较小。 |
map 任务的总运行时间(SLOTS_MILLIS_MAPS) |
map 任务的总运行时间,单位毫秒。该计数器包括以推测执行方式启动的任务。 |
reduce 任务的总运行时间(SLOTS_MILLIS_REDUCES) |
reduce任务的总运行时间,单位毫秒。该值包括以推测执行方式启动的任务。 |
在保留槽之后,map任务等待的总时间(FALLOW_SLOTS_MILLIS_MAPS) |
在为 map 任务保留槽之后所花费的总等待时间,单位是毫秒。 |
在保留槽之后,reduce 任务等待的总时间(FALLOW_SLOTS_MILLIS_REDUCES) |
在为 reduce 任务保留槽之后,花在等待上的总时间,单位为毫秒。 |
计数器的该如何使用?
下面我们来介绍如何使用计数器。
1、定义计数器
1)枚举声明计数器
// 自定义枚举变量Enum
Counter counter = context.getCounter(Enum enum)
2)自定义计数器
/ 自己命名groupName和counterName
Counter counter = context.getCounter(String groupName,String counterName)
2、为计数器赋值
1)初始化计数器
counter.setValue(long value);// 设置初始值
2)计数器自增
counter.increment(long incr);// 增加计数
3、获取计数器的值
1) 获取枚举计数器的值
Configuration conf = new Configuration();
Job job = new Job(conf, "MyCounter");
job.waitForCompletion(true);
Counters counters=job.getCounters();
Counter counter=counters.findCounter(LOG_PROCESSOR_COUNTER.BAD_RECORDS_LONG);// 查找枚举计数器,假如Enum的变量为BAD_RECORDS_LONG
long value=counter.getValue();//获取计数值
2) 获取自定义计数器的值
Configuration conf = new Configuration();
Job job = new Job(conf, "MyCounter");
job.waitForCompletion(true);
Counters counters = job.getCounters();
Counter counter=counters.findCounter("ErrorCounter","toolong");// 假如groupName为ErrorCounter,counterName为toolong
long value = counter.getValue();// 获取计数值
3) 获取内置计数器的值
Configuration conf = new Configuration();
Job job = new Job(conf, "MyCounter");
job.waitForCompletion(true);
Counters counters=job.getCounters();
// 查找作业运行启动的reduce个数的计数器,groupName和counterName可以从内置计数器表格查询(前面已经列举有)
Counter counter=counters.findCounter("org.apache.hadoop.mapreduce.JobCounter","TOTAL_LAUNCHED_REDUCES");// 假如groupName为org.apache.hadoop.mapreduce.JobCounter,counterName为TOTAL_LAUNCHED_REDUCES
long value=counter.getValue();// 获取计数值
4) 获取所有计数器的值
Configuration conf = new Configuration();
Job job = new Job(conf, "MyCounter");
Counters counters = job.getCounters();
for (CounterGroup group : counters) {
for (Counter counter : group) {
System.out.println(counter.getDisplayName() + ": " + counter.getName() + ": "+ counter.getValue());
}
}
Hadoop学习之路(十五)MapReduce的多Job串联和全局计数器的更多相关文章
- Hadoop 学习之路(五)—— Hadoop集群环境搭建
一.集群规划 这里搭建一个3节点的Hadoop集群,其中三台主机均部署DataNode和NodeManager服务,但只有hadoop001上部署NameNode和ResourceManager服务. ...
- Hadoop 学习笔记 (十) MapReduce实现排序 全局变量
一些疑问:1 全排序的话,最后的应该sortJob.setNumReduceTasks(1);2 如果多个reduce task都去修改 一个静态的 IntWritable ,IntWritable会 ...
- Hadoop学习之路(五)Hadoop集群搭建模式和各模式问题
分布式集群的通用问题 当前的HDFS和YARN都是一主多从的分布式架构,主从节点---管理者和工作者 问题:如果主节点或是管理者宕机了.会出现什么问题? 群龙无首,整个集群不可用.所以在一主多从的架构 ...
- zigbee学习之路(十五):基于协议栈的按键实验
一.前言 经过上次的学习,相信大家已经初步学会使用zigbee协议进行发送和接受数据了.今天,我们要进行的实验是按键的实验,学会如何在协议栈里实现按键中断. 二.实验功能 在协议栈上实现按键中断,BU ...
- 嵌入式Linux驱动学习之路(十五)按键驱动-定时器防抖
在之前的定时器驱动程序中,我们发现在连续按下按键的时候,正常情况下应该是一次按下对应一次松开.而程序有时候会显示是两次按下,一次松开.这个问题是因为在按下的时候,因为是机械按键,所以电压信号会产生一定 ...
- IOS学习之路十五(UIView 添加背景图片以及加边框)
怎样给UIview添加背景图片呢很简单,就是先给view添加一个subview,然后设为背景图片: 效果图如下: 很简单直接上代码: //设置内容 self.myTopView.backgroundC ...
- FastAPI 学习之路(五十六)将token存放在redis
在之前的文章中,FastAPI 学习之路(二十九)使用(哈希)密码和 JWT Bearer 令牌的 OAuth2,FastAPI 学习之路(二十八)使用密码和 Bearer 的简单 OAuth2,Fa ...
- FastAPI 学习之路(五十五)操作Redis
之前我们分享了操作关系型数据库,具体文章, FastAPI 学习之路(三十二)创建数据库 FastAPI 学习之路(三十三)操作数据库 FastAPI 学习之路(三十四)数据库多表操作 这次我们分享的 ...
- 阿里封神谈hadoop学习之路
阿里封神谈hadoop学习之路 封神 2016-04-14 16:03:51 浏览3283 评论3 发表于: 阿里云E-MapReduce >> 开源大数据周刊 hadoop 学生 s ...
随机推荐
- Java 使用new Thread和线程池的区别
本文转至:https://www.cnblogs.com/cnmenglang/p/6273761.html , 孟凡柱的专栏 的博客,在此谢谢博主! 1.new Thread的弊端执行一个异步任务你 ...
- 小程序:获取input输入的值
wxml <input placeholder='输入你的姓名' value='{{name}}' bindblur='nameblur'></input> js data ...
- gulp自动化打包及静态文件自动添加版本号
前端自动化打包发布已是一种常态,尤其在移动端,测试过程中静态资源的缓存是件很头疼的事情,有时候明明处理的bug测试还是存在,其实就是缓存惹的祸,手机不比pc浏览器,清理缓存还是有点麻烦的.所以自动化实 ...
- centos文件基本操作
centos彻底删除文件夹.文件命令(centos 新建.删除.移动.复制等命令: 1.新建文件夹 mkdir 文件名 新建一个名为test的文件夹在home下 view source1 mkdir ...
- 在windows上搭建redis集群(redis-cluster)
一 所需软件:Redis.Ruby语言运行环境.Redis的Ruby驱动redis-xxxx.gem.创建Redis集群的工具redis-trib.rb 二 安装配置redis redis下载地址 ...
- css sprites的原理和作用
CSS Sprites在国内很多人叫css精灵,是一种网页图片应用处理方式.它允许你将一个页面涉及到的所有零星图片都包含到一张大图中去,这样一来,当访问该页面时,载入的图片就不会像以前那样一幅一幅地慢 ...
- 网络I/O模型--07Netty基础
Netty 是由 JBOSS 提供的一个 Java 开源框架. Netty 提供异步的.事件驱动的网络应用程序框架和工具 ,用以快速开发高性能 . 高可靠性的网络服务器和客户端程序. Net ...
- 你真的了解View的坐标吗?
闲聊 View,对我们来说在熟悉不过了,从接触 Android 开始,我们就一直在接触 View,界面当中到处都是 View,比如我们经常用到的 TextView,Button,LinearLayou ...
- easyui 笔记
easyui-datagrid:loadFilter:处理服务器端传递过来的参数. 刷新datagrid:$("#xxx").datagrid('reload'): form 表单 ...
- pycharm 调试Django 奇葩问题:Process finished with exit code -1073741819
想自己整个BLOG,发现python+Django好像还不错,尝试一下.在使用过程中,突然pycharm不能调试django工程.网上搜索也没解决,是google哦.好像记得启动pycharm时,看到 ...