1.bouding box regression总结:

  rcnn使用l2-loss

  首先明确l2-loss的计算规则:

               L∗=(f∗(P)−G∗)2,∗代表x,y,w,h

                 整个loss : L=Lx+Ly+Lw+Lh

               也就是说,按照l2-loss的公式分别计算x,y,w,h的loss,然后把4个loss相加就得到总的bouding box regression的loss。这样的loss是直接预测bbox的

               绝对坐标与绝对长宽。

  改进1:

      问题:如果直接使用上面的l2-loss,loss的大小会收到图片的大小影响。

      解决方案:loss上进行规范化(normalization)处理。

           Lx=(fx(P)−Gx)W)2,Ly=(fy(P)−Gy)H)2,Lw=(fw(P)−Gw)W)2,Lh=(fh(P)−Gh)H)2,其中, W,H分别为输入图片的宽与高

      这种改进没有被采纳

  改进2:

      rcnn直接使用的是下面这个公式,也使用了规范化,但除以的是proposal的wh,并且wh的loss用的log函数

     

      cascade论文说这个改进的目的是:“To encourage a regression invariant to scale and location”,也就是增加scale和location的不变性  

      位置不变性:delta_x = [(g_x + a) - (b_x + a)] / b_w。不管平移量a是多少,delta_x都是一样的

    尺寸不变性:delta_w = log((g_w * b) / (b_w * b))。不管图片缩放b是多少,delta_w都是一样的

      至于为什么用log,有个博客说是:是为了降低w,hw,h产生的loss的数量级, 让它在loss里占的比重小些。  这个解释还有待观察

  改进3:

      问题:当预测值与目标值相差很大时, 梯度容易爆炸, 因为梯度里包含了x−t

      解决方案:smoothl1代替l2-loss,当差值太大时, 原先L2梯度里的x−t被替换成了±1, 这样就避免了梯度爆炸

  改进4:

      问题:由于bouding box regression经常只在proposal上做微小的改变,导致bouding box regression的loss比较小,所以bouding box regression的loss一般比classification

         的loss小很多。(整个loss是一个multi-task learning,也就是分类和回归)

      解决方案:标准化

           

          

延伸问题:iou-loss与l2-loss,smoothl1的优缺点

https://blog.csdn.net/weixin_35653315/article/details/54571681

2.性能上iou0.6大于iou0.5,但iou0.7却小于0.5,为什么?

0.7的iou生成的正样本的框的质量更高,应该性能更好,但ap值却在下降。原因在于,iou在0.5时,正样本大多集中在0.5到0.6之间,如果你阈值选在0.7,正样本数量大大减少,造成了过拟合。

3.iterative bbox多次做bouding box的回归,但每次回归都使用的iou0.5,没有考虑样本分布改变;integral loss是根据不同iou分别算loss,没有解决不同iou 正样本的数量不一样。cascade-rcnn与iterative bbox区别:1.每个stage进行了重采样   2.训练和测试的分布是一样的

因此cascade的好处是:1.不会出现过拟合。每一个stage都有足够的正样本

            2.每个stage用了更高的iou进行优化,proposal质量更高了

            3.高iou过滤了一些outliers

4.对比实验中的stat:就是为了解决分类loss大,bouding box regression loss小,将delta标准化的操作。

           cascade rcnn中的stat是每一次回归都要做一次标准化,应该是因为每一次回归生成的新分布的均值和方差发生变化

5.对比实验1:

     

  越高iou,cascade-rcnn提升越明显,最常用的ap50的提升最小且提升性能有限

  延伸问题1: 为什么iou越低的检测性能会越低?

  延伸问题2:   怎么去解决?

      

对比实验2:

      

    前提:这个实验是都用训练的时候用cascade rcnn,测试的时候在不同层测试和联合测试做对比。

    a.单独在stage1上测试,性能比baseline要好,这是cascade的方式带来的提升;单独在stage2上测试性能提升最大,单独stage3在ap70以下有略微下降,以上有略微上升

    b.在stage1、stage2上联合测试,ap70以下都获得了最好的结果,ap70以上会比stage3低一点;在stage1、stage2、stage3上联合测试,整体ap更高,ap70以上都有很大提升

    

    延伸问题1: 为什么出现这样的现象?

    延伸问题2: cascade-rcnn如何做联合测试的?     

对比实验3:

     

      使用了iou,性能在提升;使用了stat性能也提升。同时使用iou和stat,总ap在上升,但是ap70以下的略微下降,ap80以上的提升,特别是ap90提升明显

      延伸问题:为什么在用iou的基础上加stat,70以下反而下降?

对比实验4:

      

      联合预测的时候,1-2联合提升最明显;1-3比1-2也有提升,主要在高质量框上,整体ap提升了;但是再多回归一次,整体ap有略微下降,ap90以下的都下降了,

      但是ap90上升了

      延伸问题:为什么多一个stage,性能还下降了?

cascade如何训练?

第一个stage选512个roi,训练之后把这些roi全给第二个stage的proposal_info_2nd(这个里面调用decodebbox层,也就是对当前的框进一步精修给下一个stage),proposal_info_2nd中batchsize为-1,proposaltarget源码增加了batchsize为-1的情况,就是把所有的正负样本都考虑进来(实际上数量应该是小于512的),而不是原来默认的128.这个时候再跟gt进行assign,重新分配roi和gt给下一个stage.

在decodebox层里面,还会把精修后错误的roi去掉,比如x1大于x2;同时,也会把和gt iou超过0.95的去掉,就是觉得这个已经够精确,不用再精修了

  // screen out mal-boxes
if (this->phase_ == TRAIN) {
for (int i = ; i < num; i++) {
const int base_index = i*bbox_dim+;
if (bbox_pred_data[base_index] > bbox_pred_data[base_index+]
|| bbox_pred_data[base_index+] > bbox_pred_data[base_index+]) {
valid_bbox_flags[i] = false;
}
}
}
// screen out high IoU boxes, to remove redundant gt boxes
if (bottom.size()== && this->phase_ == TRAIN) {
const Dtype* match_gt_boxes = bottom[]->cpu_data();
const int gt_dim = bottom[]->channels();
const float gt_iou_thr = this->layer_param_.decode_bbox_param().gt_iou_thr();
for (int i = ; i < num; i++) {
const float overlap = match_gt_boxes[i*gt_dim+gt_dim-];
if (overlap >= gt_iou_thr) {
valid_bbox_flags[i] = false;
}
}
}

cascade如何测试 ?

bouding box regression是直接从最后一个stage得到的结果,即bbox_pre_3rd。

score的预测是把当前stage的score和之前层的score平均。stage2是把stage1的score*0.5 + stage2的score*0.5,stage3是把stage1的score*0.333 + stage2的score*0.333 + stage3的score*0.333。具体做法是:比如stage2的预测,roi-pooling出来的特征分别用两个分支得到两个score,这两个分支就是两层fc,一个用stage1的fc的参数,一个用stage2的fc的参数,这样就分别得到了两个stage的score再求平均。

注意:test.prototxt里面有cls_prob、cls_prob_2nd_avg、cls_prob_3rd_avg 3个输出,cls_prob是1的结果,cls_prob_2nd_avg是1+2的结果,cls_prob_3rd_avg是1+2+3的结果,他这3个输出应该是为了考虑最终的实验比较,最终的实际输出应该还是cls_prob_3rd_avg。

总的来说,cls是3个stage求平均,bouding box regression是直接从stage3获得

为什么从3个stage到4个stage,性能还下降了?

可能是overfitting造成的:1.如果以faster来说的话,每个stage会增加两个大的fc和两个小的fc,这个参数量很大;  2.cascade代码中,每次回归之前,会把前一个stage的roi与gt的iou大于0.9的消除掉,stage越往高走,roi的个数是越会下降的。   3.并且也会把一些负样本去掉,因为cascade中每个stage会把roi不正常的框去掉,回归可能导致负样本这样

还有一点,就是可能模型本身做regression,多次regression后,好多框其实已经修正的比较好了,再去修正可能就是扰动,不能让性能很好提升,甚至有可能反而下降。

主要是往后特征没办法更好了吧,加更多也没有收益,只要Inference设计好,下降倒不太会

Cascade rcnn 3 4 也没下降,只是轻微影响一点,是饱和了


cascade rcnn论文总结的更多相关文章

  1. Cascade R-CNN论文讲解(转载)

    转载链接:https://blog.csdn.net/qq_21949357/article/details/80046867 论文思想:为了解决IOU设置带来的最终的AP值,作者引入了cascade ...

  2. 【目标检测】Cascade R-CNN 论文解析

    目录 0. 论文链接 1. 概述 2. 网络结构的合理性 3. 网络结构 4. 参考链接 @ 0. 论文链接 Cascade R-CNN 1. 概述   这是CVPR 2018的一篇文章,这篇文章也为 ...

  3. 目标检测 | 经典算法 Cascade R-CNN: Delving into High Quality Object Detection

    作者从detector的overfitting at training/quality mismatch at inference问题入手,提出了基于multi-stage的Cascade R-CNN ...

  4. [原创]Faster R-CNN论文翻译

    Faster R-CNN论文翻译   Faster R-CNN是互怼完了的好基友一起合作出来的巅峰之作,本文翻译的比例比较小,主要因为本paper是前述paper的一个简单改进,方法清晰,想法自然.什 ...

  5. R-CNN论文翻译

    R-CNN论文翻译 Rich feature hierarchies for accurate object detection and semantic segmentation 用于精确物体定位和 ...

  6. CVPR2019 | Mask Scoring R-CNN 论文解读

    Mask Scoring R-CNN CVPR2019 | Mask Scoring R-CNN 论文解读 作者 | 文永亮 研究方向 | 目标检测.GAN 推荐理由: 本文解读的是一篇发表于CVPR ...

  7. [Network Architecture]Mask R-CNN论文解析(转)

    前言 最近有一个idea需要去验证,比较忙,看完Mask R-CNN论文了,最近会去研究Mask R-CNN的代码,论文解析转载网上的两篇博客 技术挖掘者 remanented 文章1 论文题目:Ma ...

  8. k[原创]Faster R-CNN论文翻译

    物体检测论文翻译系列: 建议从前往后看,这些论文之间具有明显的延续性和递进性. R-CNN SPP-net Fast R-CNN Faster R-CNN Faster R-CNN论文翻译   原文地 ...

  9. Cascade R-CNN目标检测

    成功的因素: 1.级联而非并联检测器 2.提升iou阈值训练级联检测器的同时不带来负面影响 核心思想: 区分正负样本的阈值u取值影响较大,加大iou阈值直观感受是可以增加准确率的,但是实际上不是,因为 ...

随机推荐

  1. java遍历HashMap的高效方法

    https://stackoverflow.com/questions/46898/how-do-i-efficiently-iterate-over-each-entry-in-a-java-map

  2. 精尽 Kafka 学习指南【优秀学习指南汇总】

    1. 视频 炼石成金 <中间件之 Kafka> 一共有 19P .概念部分讲的蛮细的. 尚硅谷 <大数据视频_Kafka视频教程> 一共 24P .讲的还不错的. 书生小四 & ...

  3. java,JsonFormat格式化日期问题

    今天使用以下代码格式日期字段 @JsonFormat(pattern = "yyyy-MM-dd HH:mm:ss") private Date createTime; 发现这样渲 ...

  4. span与a元素的键盘聚焦性以及键盘点击性研究——张鑫旭

    一.众所周知的与不为所知的 我们平时涉及点击交互事件的时候,都是使用的a元素或者button元素,原因是可以相应键盘focus效果以及回车触发点击事件,这是众所周知的. 但是,可能存在一些特殊情况,我 ...

  5. UOJ#410. 【IOI2018】会议

    传送门 首先可以设 \(f[l][r]\) 表示 \([l,r]\) 的答案 设 \(x\) 为区间 \([l,r]\) 的最大值的位置,那么 \(f[l][r] = min(f[l][x-1]+h[ ...

  6. BZOJ1911: [Apio2010]特别行动队(dp 斜率优化)

    题意 题目链接 Sol 裸的斜率优化,注意推导过程中的符号问题. #include<bits/stdc++.h> #define Pair pair<int, int> #de ...

  7. sql语句执行出错:Incorrect integer value: '' for column 'id' at row 1

    经检验:mysql5以上的版本如果是空值应该要写NULL. 例如:insert into web_works (work_id,work_name,work_number) values ('','$ ...

  8. 【node】fs模块,文件和目录的操作

    检查文件是否存在,查询文件信息 fs.stat() fs.stat('./server.js', function (err, stat) { if (stat && stat.isF ...

  9. react 中使用定时器 Timers(定时器)

    setTimeout,clearTmeout setInterval,clearInterval 在 class 中 class TimersDemo extends Component { cons ...

  10. 180328_gVim设置tab为4个空格

    找到gVim安装目录 C:\Program Files (x86)\Vim\ 更改目录下的 _vimrc 文件,这是一个只读文件,需要管理员权限进行修改和保存. 在文件末尾添加下列内容: set ts ...