\(qwq\)今天\(rqy\)给窝萌这些蒟蒻讲了斜率优化……大概是他掉打窝萌掉打累了吧顺便偷了\(rqy\)讲课用的图

\(Step \ \ 1\) 一点小转化

事实上斜率优化是专门用来处理这样一类\(dp\)式子的 $$dp_i = A_i + \max \limits _{j = 1}^{i -1}(B_j - C_j \times base_i)$$窝萌尝试把上式中的\(B_j\)、\(C_j\)和\(base_i\)等价成\(x_j\)、\(y_j\)和\(k_i\),并把它们丢到一个平面上,然后它萌就会变成一堆点\((x_j,y_j)\),画一条过他们的直线,类似于$$y - y_j = k_i(x - x_j)$$变换一下$$y = k_ix + (y_j + x_j)$$窝萌会发现,现在窝萌所求的不过是一条截距最大的直线而已。那么其实就是相当于求一个给定\(k\)意义下最靠上的点。

\(qwq\)那么窝萌不妨先减弱问题的不可做性,使其单调——令\(x\)单调增、\(k_i\)单调减。

那当窝萌在朴素\(DP\)遍历所有的\(k_i\)时,所得到的直线的轨迹应该是这样的:

(上图是个\(GIF\)……不动的话就拖出来看吧)轨迹正好是一个凸壳,并且你会发现它的轨迹正好是再绕着每个斜率下最优的点旋转。

\(rqy\)对此是这么解释的:

可以发现好多点是没有机会作为最优的点的。

形象⼀点的说,如果⼀个点的左边和右边某两个点在它上⽅“搭起”了⼀条线段,那么它就永远不会被选到。

而因为我们保证了\(x\)和\(k\)的单调性,所以就我们可以比较方便的考虑“如何选取当前最优点”这个问题。我们考虑遇到一个新的点,是否把他加入最优解集合里面,其实质就是维护一个上凸壳。那么已知两个点\(A\)和\(B\),现在遇到了新加入的点\(C\),此时有两种情况:

1、\(BC\)的斜率大于\(AB\)的斜率

这时我们需要抛弃\(B\),直接连接\(AC\):

2、\(BC\)的斜率小于\(AB\)的斜率

通过这种方式我们就可以完成对整个凸壳的维护。而在判定时也很简单,用叉积来判断即可,即有\(A\)、\(B\)、\(C\)三个点分别是\((x_A,y_A),(x_B,y_B),(x_C,y_C)\)满足\(x_A \leq x_B \leq x_C\),那么如果$$(x_C-x_A)(y_B - y_A) - (x_B - x_A)(y_C- y_A) < 0$$则证明是第一种情况,否则是第二种。

\(emmmm\)直接求斜率当然也是可以的吧,不过会不会很慢很麻烦啊\(qwq\)。

\(Step \ \ 2\) 代码实现以及拓展

\(emmm\)我们考虑用一个逻辑上单调的队列来实现去掉不优的状态 +加入新的状态。回归上题,我们所求的是\(max\),所以我们需要去掉那些斜率小的状态;同时需要加入斜率大的状态。由于整个过程牵扯到前后删点,所以用双端队列来维护。本蒟蒻的(伪)代码如下:

int queue[MAXN] ;
int head = 0, tail = 0 ;
for(i = 1; i <= N; i ++){
while (1){
A = queue[head], B = queue[head + 1] ;
if (y[A] - k[i] * x[A] < y[B] - k[i] * x[B]) head ++ ;
else break ;
}
dp[i] = base[i] + y[A] - k[i] * x[A] ;
Maybe y[i] needs calcing ?
Maybe x[i] also needs calcint ?
So, Calc_it() ;
while (tail - head >= 2){
A = queue[tail - 1], B = queue[tail] ;
if ((y[i] - y[A]) * (x[B] - x[A])
- (x[i] - x[A]) * (y[B] - y[A]) > 0)
tail-- ;
else break ;
}
queue[++ tail] = i ;
}

对了……我在啃这个地方时出了个\(bug\)……那是因为我一直以为\(y\)和\(x\)从本质上来讲有\(n^2\)个……\(OTZ\)

那么对于拓展而言,我们以上做的一切都是基于“\(x\)和\(k\)单调”这一前提的,那么还会有以下两种情况:

1、\(x\)不单调

那么实质上就是我们需要动态插入删除、从内部删除,那么就需要用平衡树来维护一个凸包了 。

2、\(k\)不单调

那么实质上就是我们原来比较方便的第一个\(while\)——从左往右直接删是不行的了,因为现在不优不代表之后不优,所以此时我们需要的就是三分一个位置而不是从前向后扫、

哦,还有,对于\(dp\)式子而言,如果它长这个样子:$$dp_i = A_i + \min \limits _{j = 1}^{i -1}(B_j - C_j \times base_i)$$那么其实我们维护的就是一个下凸壳,所以此时只需要把所有的大于号改成小于号即可。

嗝……那么下面就来看题吧


#\(\mathcal{\color{red}{Description}}\)

\(Link\)

给定一个序列\(C\)和一个常数\(P\) 。你要将序列划分成若干段;每一段如果从\(L\)到\(R\)、整段的和为\(S\) ,则会产生\((R-L+S-P)^2\)的代价,求最小代价。

#\(\mathcal{\color{red}{Solution}}\)

对于这个题而言,我们考虑先把这个恶心的式子化简一下:$$(R-L+S-P)^2 = (R -L + \sum \limits_{i=L}^{R}{C_i} +P)^2 = (\sum \limits_{i=L}^{R}{C_i + 1} - (P + 1)) ^ 2$$然后我们发现这玩意儿只要我们一开始把输入的所有\(C_i\)和\(P++\)就好了……但我并没有这么做\(qwq\)……因为这是\(rqy\)的做法\(hhhhh\)。

回归刚才的,我们观察原式其实可以得出不同的式子,比如我们把\((\sum \limits _{i=L}^{R}{C_i + 1} - (P + 1))^2\)写成 \((S - L) ^ 2\),那么就是$$(sum_R - sum{L-1} + (R - L - 1)-P-1)^2$$而对于比较朴素的\(dp\)方程来讲,他大概长这样$$dp_i = min(dp_j + (sum_R - sum_{L} + (R - L)-P-1)^2)$$窝萌不妨记一个\(A_i = sum_i + i,B_i = sum_i+i+P+1\),那么原来的方程就可以写作$$dp_i = min(dp_j + (A_i-B_j)^2)$$稍微展开一下就是$$dp_i = dp_j+A_i^2 + B_j^2 - 2A_iB_j$$然后你就会发现跟斜率优化的板子们惊人的相似……其中\(A_i\) 只跟\(i\) 有关,看作模型中的\(A_i\) (常项),\(dp_j+B_j^2\) 看作模型中的\(B_j\) ,\(B_j\)看作模型中的\(C_j\) ,\(2A_i\) 看作模型中的\(base_i\),即斜率\(k\),跑一个斜率优化\(DP\)即可。

#include <cstdio>
#include <iostream>
#define MAXN 200010 using namespace std ; int T1, T2 ;
int N, L, head = 1, tail = 1, que[MAXN], i ;
double S[MAXN], A[MAXN], B[MAXN], dp[MAXN] ; inline double qr(){
int k = 0 ; char c = getchar() ;
while (c < '0' || c > '9') c = getchar() ;
while (c <= '9' && c >= '0') k = (k << 1) + (k << 3) + c - 48, c = getchar() ;
return (double)k ;
}
inline double get_x(int now){return B[now] ;}
inline double get_y(int now){return dp[now] + B[now] * B[now] ;}
inline double get_K (double a, double b){
return ( get_y(a) - get_y(b) )/ ( get_x(a) - get_x(b) ) ;
}
int main(){
cin >> N >> L ;
for (i = 1; i <= N; i ++) S[i] = qr() + S[i - 1] ;
for (i = 0; i <= N; i ++) A[i] = S[i] + i, B[i] = A[i] + L + 1 ;
for (i = 1; i <= N; i ++){
while (head < tail && get_K(que[head], que[head + 1]) < 2 * A[i]) ++ head ;
dp[i] = dp[que[head]] + (A[i] - B[que[head]]) * (A[i] - B[que[head]]) ;
while (head < tail && get_K(que[tail - 1], i) < get_K(que[tail], que[tail - 1])) -- tail ;
que[++ tail] = i ;
}
cout << ((long long)dp[N]);
}
```

学习笔记·斜率优化 [HNOI2008]玩具装箱的更多相关文章

  1. 斜率优化dp学习笔记 洛谷P3915[HNOI2008]玩具装箱toy

    本文为原创??? 作者写这篇文章的时候刚刚初一毕业…… 如有错误请各位大佬指正 从例题入手 洛谷P3915[HNOI2008]玩具装箱toy Step0:读题 Q:暴力? 如果您学习过dp 不难推出d ...

  2. BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][St ...

  3. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  4. 【BZOJ 1010】 [HNOI2008]玩具装箱toy (斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9330  Solved: 3739 Descriptio ...

  5. bzoj 1010 [HNOI2008]玩具装箱toy(DP的斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7874  Solved: 3047[Submit][St ...

  6. bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 11893  Solved: 5061[Submit][S ...

  7. [HNOI2008]玩具装箱TOY --- DP + 斜率优化 / 决策单调性

    [HNOI2008]玩具装箱TOY 题目描述: P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京. 他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器 ...

  8. BZOJ 1010: [HNOI2008]玩具装箱toy(DP+斜率优化)

    [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊 ...

  9. bzoj1010: [HNOI2008]玩具装箱toy(DP+斜率优化)

    1010: [HNOI2008]玩具装箱toy 题目:传送门 题解: 很明显的一题动态规划... f[i]表示1~i的最小花费 那么方程也是显而易见的:f[i]=min(f[j]+(sum[i]-su ...

随机推荐

  1. request获取当前用户

    1.request.getRemoteUser();//获取当前缓存的用户,比如Spring Security做权限控制后就会将用户登录名缓存到这里 request.getRemoteAddr();/ ...

  2. nginx的启动和关闭

    nginx的启动和关闭nginx -h 查看帮助信息nginx -v 查看Nginx的版本号nginx -V 显示Nginx的版本号和编译信息start nginx 启动Nginxnginx -s s ...

  3. C# 如何在Linux操作系统下读取文件

    发布在Window环境上的微服务需要部署在Linux环境上,本以为没有什么问题,结果因为一处读取文件路径的原因报错了,在此记录一下两个问题:1.C#如何判断当前运行环境是什么操作系统:2.C#读取文件 ...

  4. CSS 画一个心

    效果图: 实现原理: 可以把这个心分为两部分,两个长方形,分别设置 border-radius,transform: rotate() . 设置属性之后 再次添加一个,设置相反的 rotate 设置其 ...

  5. RxJava重温基础

    RxJava是什么 a library for composing asynchronous and event-based programs using observable sequences f ...

  6. 报表在IBM AIX系统下resin部署

     报表是用java开发的,具有良好的跨平台性.不仅可以应用在windows.linux.操作系统,还可以应用在AIX等等的unix操作系统.在各种操作系统上部署过程有一些差别.下面说一下在AIX操 ...

  7. Ubuntu16安装GPU版本TensorFlow(个人笔记本电脑)

    想着开始学习tf了怎么能不用GPU,网上查了一下发现GeForce GTX确实支持GPU运算,所以就尝试部署了一下,在这里记录一下,避免大家少走弯路. 使用个人笔记本电脑thinkpadE570,内存 ...

  8. 相关与卷积(数字信号处理)的数学原理及 Python 实现

    数学原理 在数字信号处理中,相关(correlation)可以分为互相关(cross correlation)和自相关(auto-correlation). 互相关是两个数字序列之间的运算:自相关是单 ...

  9. Ad-hoc 查询以及动态SQL的罪恶[译]

    本文为翻译文章,原文地址:https://www.simple-talk.com/blogs/2009/08/03/stolen-pages-ad-hoc-queries-and-the-sins-o ...

  10. C++虚函数原理

    类中的成员函数分为静态成员函数和非静态成员函数,而非静态成员函数又分为普通函数和虚函数. Q: 为什么使用虚函数 A: 使用虚函数,我们可以获得良好的可扩展性.在一个设计比较好的面向对象程序中,大多数 ...