题目传送门

Promotion Counting

题目描述

The cows have once again tried to form a startup company, failing to remember from past experience that cows make terrible managers!

The cows, conveniently numbered 1 \ldots N1…N (1 \leq N \leq 100,0001≤N≤100,000), organize the company as a tree, with cow 1 as the president (the root of the tree). Each cow except the president has a single manager (its "parent" in the tree). Each cow ii has a distinct proficiency rating, p(i)p(i), which describes how good she is at her job. If cow ii is an ancestor (e.g., a manager of a manager of a manager) of cow jj, then we say jj is a subordinate of ii.

Unfortunately, the cows find that it is often the case that a manager has less proficiency than several of her subordinates, in which case the manager should consider promoting some of her subordinates. Your task is to help the cows figure out when this is happening. For each cow ii in the company, please count the number of subordinates jj where p(j) > p(i)p(j)>p(i).

奶牛们又一次试图创建一家创业公司,还是没有从过去的经验中吸取教训--牛是可怕的管理者!

为了方便,把奶牛从 1 \cdots N(1 \leq N \leq 100, 000)1⋯N(1≤N≤100,000) 编号,把公司组织成一棵树,1 号奶牛作为总裁(这棵树的根节点)。除了总裁以外的每头奶牛都有一个单独的上司(它在树上的 “双亲结点”)。所有的第 ii 头牛都有一个不同的能力指数 p(i)p(i),描述了她对其工作的擅长程度。如果奶牛 ii 是奶牛 jj 的祖先节点(例如,上司的上司的上司),那么我们我们把奶牛 jj 叫做 ii 的下属。

不幸地是,奶牛们发现经常发生一个上司比她的一些下属能力低的情况,在这种情况下,上司应当考虑晋升她的一些下属。你的任务是帮助奶牛弄清楚这是什么时候发生的。简而言之,对于公司的中的每一头奶牛 ii,请计算其下属 jj 的数量满足 p(j) > p(i)p(j)>p(i)。

输入输出格式

输入格式:

The first line of input contains NN.

The next NN lines of input contain the proficiency ratings p(1) \ldots p(N)p(1)…p(N) for the cows. Each is a distinct integer in the range 1 \ldots 1,000,000,0001…1,000,000,000.

The next N-1N−1 lines describe the manager (parent) for cows 2 \ldots N2…N. Recall that cow 1 has no manager, being the president.

输入的第一行包括一个整数 NN。

接下来的 NN 行包括奶牛们的能力指数 p(1) \cdots p(N)p(1)⋯p(N). 保证所有数互不相同,在区间 1 \cdots 10^91⋯109 之间。

接下来的 N-1N−1 行描述了奶牛 2 \cdots N2⋯N 的上司(双亲节点)的编号。再次提醒,1 号奶牛作为总裁,没有上司。

输出格式:

Please print NN lines of output. The iith line of output should tell the number of subordinates of cow ii with higher proficiency than cow ii.

输出包括 NN 行。输出的第 ii 行应当给出有多少奶牛 ii 的下属比奶牛 ii 能力高。

输入输出样例

输入样例#1:

5
804289384
846930887
681692778
714636916
957747794
1
1
2
3
输出样例#1:

2
0
1
0
0

说明

感谢@rushcheyo 的翻译


  分析:

  线段树合并。

  先构建出树形结构,然后对每一个节点建立一个权值线段树,在$dfs$过程中,对于每一个子节点把它的每一个子节点的线段树与它的线段树合并。查询答案就在当前线段树中查询比该节点的权值$val[x]$更大的值有多少个即可。

  Code:

//It is made by HolseLee on 15th Oct 2018
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std; const int N=1e5+;
int n,head[N],cnte,val[N],root[N],tot,cnt,seg[N*],ls[N*],rs[N*],ans[N];
struct Node {
int id,v;
inline bool operator < (const Node x) const {
return v<x.v;
}
}b[N];
struct Edge {
int to,nxt;
}e[N]; inline int read()
{
char ch=getchar(); int num=; bool flag=false;
while( ch<'' || ch>'' ) {
if( ch=='-' ) flag=true; ch=getchar();
}
while( ch>='' && ch<='' ) {
num=num*+ch-''; ch=getchar();
}
return flag ? -num : num;
} inline void add(int x,int y)
{
e[++cnte].to=y;
e[cnte].nxt=head[x];
head[x]=cnte;
} void build(int &rt,int l,int r,int x)
{
if( !rt ) rt=++tot;
seg[rt]++;
if( l==r ) return;
int mid=(l+r)>>;
if( x<=mid ) build(ls[rt],l,mid,x);
else build(rs[rt],mid+,r,x);
} int query(int rt,int l,int r,int x)
{
if( !rt ) return ;
if( x<=l ) return seg[rt];
int mid=(l+r)>>;
if( x<=mid ) return query(ls[rt],l,mid,x)+query(rs[rt],mid+,r,x);
else return query(rs[rt],mid+,r,x);
} int merge(int x,int y)
{
if( !x || !y ) return x+y;
int rt=++tot;
seg[rt]=seg[x]+seg[y];
ls[rt]=merge(ls[x],ls[y]);
rs[rt]=merge(rs[x],rs[y]);
return rt;
} void dfs(int x)
{
for(int i=head[x],y; i; i=e[i].nxt) {
y=e[i].to; dfs(y);
root[x]=merge(root[x],root[y]);
}
ans[x]=query(root[x],,cnt,val[x]+);
build(root[x],,cnt,val[x]);
} int main()
{
n=read();
int x,y;
for(int i=; i<=n; ++i) b[i].id=i, b[i].v=read();
sort(b+,b+n+);
for(int i=; i<=n; ++i)
if( b[i].v>b[i-].v ) val[b[i].id]=++cnt;
else val[b[i].id]=cnt;
for(int i=; i<=n; ++i) {
x=read(); add(x,i);
}
dfs();
for(int i=; i<=n; ++i) printf("%d\n",ans[i]);
return ;
}

洛谷P3605 [USACO17JAN] Promotion Counting 晋升者计数 [线段树合并]的更多相关文章

  1. 洛谷 P3605 [USACO17JAN]Promotion Counting晋升者计数

    题目描述 The cows have once again tried to form a startup company, failing to remember from past experie ...

  2. 线段树合并 || 树状数组 || 离散化 || BZOJ 4756: [Usaco2017 Jan]Promotion Counting || Luogu P3605 [USACO17JAN]Promotion Counting晋升者计数

    题面:P3605 [USACO17JAN]Promotion Counting晋升者计数 题解:这是一道万能题,树状数组 || 主席树 || 线段树合并 || 莫队套分块 || 线段树 都可以写..记 ...

  3. 树状数组 P3605 [USACO17JAN]Promotion Counting晋升者计数

    P3605 [USACO17JAN]Promotion Counting晋升者计数 题目描述 奶牛们又一次试图创建一家创业公司,还是没有从过去的经验中吸取教训--牛是可怕的管理者! 为了方便,把奶牛从 ...

  4. luogu P3605 [USACO17JAN]Promotion Counting晋升者计数

    题目链接 luogu 思路 可以说是线段树合并的练手题目吧 也没啥说的,就是dfs,然后合并... 看代码吧 错误 和写主席树错的差不多 都是变量写错.... 代码 #include <bits ...

  5. P3605 [USACO17JAN]Promotion Counting晋升者计数

    思路 线段树合并的板子.. 和子节点合并之后在值域线段树上查询即可 代码 #include <cstdio> #include <algorithm> #include < ...

  6. 【USACO17JAN】Promotion Counting晋升者计数 线段树+离散化

    题目描述 The cows have once again tried to form a startup company, failing to remember from past experie ...

  7. Luogu3605 [USACO17JAN]Promotion Counting晋升者计数

    Luogu3605 [USACO17JAN]Promotion Counting晋升者计数 给一棵 \(n\) 个点的树,点 \(i\) 有一个权值 \(a_i\) .对于每个 \(i\) ,求 \( ...

  8. [USACO17JAN]Promotion Counting晋升者计数

    题目描述 奶牛们又一次试图创建一家创业公司,还是没有从过去的经验中吸取教训--牛是可怕的管理者! 为了方便,把奶牛从 1 \cdots N(1 \leq N \leq 100, 000)1⋯N(1≤N ...

  9. 「洛谷4197」「BZOJ3545」peak【线段树合并】

    题目链接 [洛谷] [BZOJ]没有权限号嘤嘤嘤.题号:3545 题解 窝不会克鲁斯卡尔重构树怎么办??? 可以离线乱搞. 我们将所有的操作全都存下来. 为了解决小于等于\(x\)的操作,那么我们按照 ...

随机推荐

  1. Java并发编程原理与实战三十七:线程池的原理与使用

    一.简介 线程池在我们的高并发环境下,实际应用是非常多的!!适用频率非常高! 有过使用过Executors框架的朋友,可能不太知道底层的实现,这里就是讲Executors是由ThreadPoolExe ...

  2. Java并发编程原理与实战七:线程带来的风险

    在并发中有两种方式,一是多进程,二是多线程,但是线程相比进程花销更小且能共享资源.但使用多线程同时会带来相应的风险,本文将展开讨论. 一.引言 多线程将会带来几个问题: 1.安全性问题 线程安全性可能 ...

  3. 手机中的js事件

    // 手势事件 touchstart //当手指接触屏幕时触发 touchmove //当已经接触屏幕的手指开始移动后触发 touchend //当手指离开屏幕时触发 touchcancel // 触 ...

  4. Web API: Client: Call a Web API from a .net client

    原文地址: http://www.asp.net/web-api/overview/web-api-clients/calling-a-web-api-from-a-net-client 翻译地址:h ...

  5. soj2013.Pay Back

    2013. Pay Back Constraints Time Limit: 1 secs, Memory Limit: 256 MB Description "Never a borrow ...

  6. 多角度看.NET面试题

    1.ASP.NET中的身份验证有那些?你当前项目采用什么方式验证请解释        身份验证是从用户获取名称和密码等标识凭证并根据某些机构验证这些凭据的过程.如果凭据有效,则提交该凭据的实体被视为通 ...

  7. 20155234 2016-2017-2 《Java程序设计》第6周学习总结

    20155234 2016-2017-2 <Java程序设计>第6周学习总结 教材学习内容总结 Java将输入/输出抽象化为串流,数据有来源及目的地,衔接两者的是串流对象. 从应用程序角度 ...

  8. 基本控件文档-UIView属性

    CHENYILONG Blog 基本控件文档-UIView属性 Fullscreen   UIView属性技术博客http://www.cnblogs.com/ChenYilong/ 新浪微博http ...

  9. HTML字体的设置

    CSS字体设置 box-sizing:border #content-box   box-shadow:设置盒子边框的阴影.     字体动作:   font-family:设置字体.比如:‘微软雅黑 ...

  10. [转]坐在马桶上看算法:只有五行的Floyd最短路算法

    此算法由Robert W. Floyd(罗伯特·弗洛伊德)于1962年发表在“Communications of the ACM”上.同年Stephen Warshall(史蒂芬·沃舍尔)也独立发表了 ...