【LG3246】[HNOI2016]序列

题面

洛谷

题解

60pts

对于每个位置\(i\),单调栈维护它往左第一个小于等于它的位置\(lp_i\)以及往右第一个小于它的位置\(rp_i\)。

那么在左端点在\((lp_i,i]\),右端点在\([i,rp_i)\)的所有区间中,

区间的贡献均为\(a_i\)(之所以取等情况不一样是防止算重或算漏)。

那么对于一个询问\(L,R\),有

\[Ans=\sum_{i=L}^R (i-max(lp_i+1,L)+1)\cdot (min(rp_i-1,R)-i+1)
\]

100pts

考虑莫队,那么我们的难点主要就是怎么从区间\([L,R]\)转移到区间\([L,R+1]\)。

用ST表查一下\([L,R+1]\)的最小值的位置\(p\),则左端点在\([L,p]\)的区间贡献均为\(a[p]\)。

现在考虑左端点在\([p+1,R+1]\)的贡献,记一个类似于前缀和的东西\(f_i=f_{lp_i}+(i-lp_i)*a[i]\),

则可以算出区间\([p+1,R+1]\)的贡献为\(f_{R+1}-f_p\),因为\(f_i\)相当于求\(i\)的\(lp\),它\(lp\)的\(lp\)...

到\(i\)的贡献,而\(p\)必为某一个转移端点,所以成立。

向\([L-1,R]\)转移同样维护一个\(g_i=g_{rp_i}+(rp_i-i)*a[i]\)。

减法直接减去一个位置对区间的贡献即可。

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
inline int gi() {
register int data = 0, w = 1;
register char ch = 0;
while (!isdigit(ch) && ch != '-') ch = getchar();
if (ch == '-') w = -1, ch = getchar();
while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar();
return w * data;
}
typedef long long ll;
const int MAX_N = 1e5 + 5;
const int LEN = 320;
int N, Q, a[MAX_N], bel[MAX_N];
struct Query { int l, r, id; } q[MAX_N], tmp[MAX_N];
bool operator < (const Query &lhs, const Query &rhs) {
if (bel[lhs.l] == bel[rhs.l]) return (bel[lhs.l] & 1) ? lhs.r < rhs.r : lhs.r > rhs.r;
else return bel[lhs.l] < bel[rhs.l];
}
int stk[MAX_N], top, lp[MAX_N], rp[MAX_N];
int st[18][MAX_N], bin[18], lg[MAX_N];
int query(int l, int r) {
int k = lg[r - l + 1];
if (a[st[k][l]] < a[st[k][r - bin[k] + 1]]) return st[k][l];
else return st[k][r - bin[k] + 1];
}
ll L[MAX_N], R[MAX_N], ans[MAX_N], Ans;
ll Ladd(int l, int r) {
int p = query(l - 1, r);
return 1ll * a[p] * (r - p + 1) + R[l - 1] - R[p];
}
ll Radd(int l, int r) {
int p = query(l, r + 1);
return 1ll * a[p] * (p - l + 1) + L[r + 1] - L[p];
} int main () {
#ifndef ONLINE_JUDGE
freopen("cpp.in", "r", stdin);
freopen("cpp.out", "w", stdout);
#endif
N = gi(), Q = gi();
for (int i = 1; i <= N; i++) a[i] = gi();
for (int i = 1; i <= N; i++) bel[i] = (i - 1) / LEN + 1;
bin[0] = 1; for (int i = 1; i <= 17; i++) bin[i] = bin[i - 1] << 1;
for (int i = 2; i <= N; i++) lg[i] = lg[i >> 1] + 1;
for (int i = 1; i <= N; i++) st[0][i] = i;
for (int i = 1; bin[i] <= N; i++)
for (int j = 1; j + bin[i] - 1 <= N; j++)
if (a[st[i - 1][j]] < a[st[i - 1][j + bin[i - 1]]]) st[i][j] = st[i - 1][j];
else st[i][j] = st[i - 1][j + bin[i - 1]];
for (int i = 1; i <= Q; i++) {
int l = gi(), r = gi();
q[i] = (Query){l, r, i};
}
sort(&q[1], &q[Q + 1]);
stk[0] = 0;
for (int i = 1; i <= N; i++) {
while (a[stk[top]] >= a[i] && top) --top;
lp[i] = stk[top], stk[++top] = i;
}
top = 0, stk[0] = N + 1;
for (int i = N; i >= 1; i--) {
while (a[stk[top]] > a[i] && top) --top;
rp[i] = stk[top], stk[++top] = i;
}
for (int i = 1; i <= N; i++) L[i] = L[lp[i]] + 1ll * (i - lp[i]) * a[i];
for (int i = N; i >= 1; i--) R[i] = R[rp[i]] + 1ll * (rp[i] - i) * a[i];
int ql = 1, qr = 0;
for (int i = 1; i <= Q; i++) {
while (qr < q[i].r) ++qr, Ans += Radd(ql, qr - 1);
while (ql < q[i].l) Ans -= Ladd(ql + 1, qr), ++ql;
while (ql > q[i].l) --ql, Ans += Ladd(ql + 1, qr);
while (qr > q[i].r) Ans -= Radd(ql, qr - 1), --qr;
ans[q[i].id] = Ans;
}
for (int i = 1; i <= Q; i++) printf("%lld\n", ans[i]);
return 0;
}

【LG3246】[HNOI2016]序列的更多相关文章

  1. BZOj 4540: [Hnoi2016]序列 [莫队 st表 预处理]

    4540: [Hnoi2016]序列 题意:询问区间所有子串的最小值的和 不强制在线当然上莫队啦 但是没想出来,因为不知道该维护当前区间的什么信息,维护前后缀最小值的话不好做 想到单调栈求一下,但是对 ...

  2. 4540: [Hnoi2016]序列

    4540: [Hnoi2016]序列 https://www.lydsy.com/JudgeOnline/problem.php?id=4540 分析: 莫队+RMQ+单调栈. 考虑加入一个点后,区间 ...

  3. [BZOJ4540][HNOI2016]序列 莫队

    4540: [Hnoi2016]序列 Time Limit: 20 Sec  Memory Limit: 512 MB Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n ...

  4. BZOJ4540 Hnoi2016 序列 【莫队+RMQ+单调栈预处理】*

    BZOJ4540 Hnoi2016 序列 Description 给定长度为n的序列:a1,a2,-,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,-,ar- ...

  5. 【BZOJ4540】[Hnoi2016]序列 莫队算法+单调栈

    [BZOJ4540][Hnoi2016]序列 Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,…,a ...

  6. [Bzoj4540][Hnoi2016] 序列(莫队 + ST表 + 单调队列)

    4540: [Hnoi2016]序列 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1567  Solved: 718[Submit][Status] ...

  7. [HNOI2016]序列 CDQ+DP

    [HNOI2016]序列 CDQ 链接 loj 思路 一个点最小变为l,最大变为r,不变的时候为v 那么j能在i前面就要满足. \(j<i\) \(r[j]<=v[i]\) \(v[j]& ...

  8. 题解-[HNOI2016]序列

    题解-[HNOI2016]序列 [HNOI2016]序列 给定 \(n\) 和 \(m\) 以及序列 \(a\{n\}\).有 \(m\) 次询问,每次给定区间 \([l,r]\in[1,n]\),求 ...

  9. P6604 [HNOI2016]序列 加强版

    *I. P6604 [HNOI2016]序列 加强版 摘自学习笔记 简单树论 笛卡尔树部分例题 I. 和 P6503 比较类似.我们设 \(f_i\) 表示全局以 \(i\) 结尾的子区间的最小值之和 ...

随机推荐

  1. C# 运行 C#代码脚本文件

    https://files.cnblogs.com/files/LittleJin/CSScriptRun.zip

  2. teradata 字符串数据合并 在concat()函数无法使用的情况下

    在teradata sql中不存在concat()函数或者stuff()函数,在此情况下,如何实现多条字符串数据合并成一行? 在查找不同方法过程中,在stackflow中找到最简便的方法,使用xml_ ...

  3. GitBlit集成AD域LDAP

    GitBlit的配置文件: gitlblit安装目录下的 /data/gitblit.properties   ,用记事本或其他编译器打开即可. 集成AD域的LDAP操作步骤 打开配置文件,添加以下内 ...

  4. ZT eoe android4.2 Bluetooth记录01-结构和代码分布

    android4.2 Bluetooth记录01-结构和代码分布 作者:cnhua5更新于 08月21日访问(697)评论(2) 在android4.2中,Google更换了android的蓝牙协议栈 ...

  5. SpringMVC如何防御CSRF

    本文说一下SpringMVC如何防御CSRF(Cross-site request forgery跨站请求伪造)和XSS(Cross site script跨站脚本攻击). 说说CSRF 对CSRF来 ...

  6. linux centos 7.5下 源码编译安装 lua环境

    lua 5.3.5 下载安装时发现缺少库 readline 需要添加依赖 yum search readline 看有哪些包 安装带有 devel 字样的 安装无 devel 的非开发包,通常不会自动 ...

  7. DNS_PROBE_FINISHED_NXDOMAIN 问题解决

    手动设置   (说明:如果您使用DNS有特殊设置,请保存设置后再进行操作) 1.打开[控制面板]→[网络连接]→打开[本地连接]→[属性]:2.双击[Internet 协议(TCP/IP)]→选择[自 ...

  8. Python之Flask框架使用

    Flask和Django.Bottle号称Python中的强大又简单的Web框架. Flask是一个使用Python编写的轻量级Web应用框架.基于Werkzeug WSGI工具箱和Jinja2 模板 ...

  9. datagrid 完整dom结构

    <!-- datagrid的最外层容器,可以使用$(target).datagrid('getPanel')或者$.data(target,'datagrid').panel得到这个DOM对象, ...

  10. java基础二 java的跨平台特性

    一:java跨平台的特性: 1.生成不平台无关系的字节码. 2.通过和平台有关的jvm即java虚拟机来执行字节码.jvm不跨平台. 图示: 疑问:1.为什么我们不直接写字节码? 因为字节码只有jvm ...