Fuzzy模糊推导(Matlab实现)
问题呈述
在模糊控制这门课程中,学到了与模糊数学及模糊推理相关的内容,但是并不太清楚我们在选择模糊规则时应该如何处理,是所有的规则都需要由人手工选择,还是仅需要选择其中的一部分就可以了。因此,在课程示例的基础上做了如下的探究。
设计一个以E、EC作为输入,U作为输出的模糊推理系统,令E、EC、U的隶属度函数为如下:
1 | 0.6 | 0.2 | 0 | 0 | 0 | 0 | 0 | 0 |
---|---|---|---|---|---|---|---|---|
0.2 | 0.6 | 1 | 0.6 | 0.2 | 0 | 0 | 0 | 0 |
0 | 0 | 0.2 | 0.6 | 1 | 0.6 | 0.2 | 0 | 0 |
0 | 0 | 0 | 0 | 0.2 | 0.6 | 1 | 0.6 | 0.2 |
0 | 0 | 0 | 0 | 0 | 0 | 0.2 | 0.6 | 1 |
分别给定“中心十字规则”以及“最强对角线规则”作为初始规则,观察由此推导出的结果,以验证初始模糊规则库应该如何选择。
结果
中心十字规则
其中,列索引代表E,行索引代表EC,中间的数据区域代表U。1代表负大(NB),2代表负中(NM),3代表零(Z),4代表正中(PB),5代表正大(PB)。
最强对角线
结果分析
从上面的结果可以分析得出:
- 当提供部分规则时,其它规则可由这些规则导出;
- 强对角线规则作为初始规则时,推导效果较好;
- 在强对角线中,左下角和右上角的隶属度为零,这与人的主观判断相同,即“误差正大,但是误差速度为负大,即误差减小(趋于零)的速度最大”,此时不应有主观判断,即维持原态即可。
Additional
tight_subplot.m
function ha = tight_subplot(Nh, Nw, gap, marg_h, marg_w)
% tight_subplot creates "subplot" axes with adjustable gaps and margins
%
% ha = tight_subplot(Nh, Nw, gap, marg_h, marg_w)
%
% in: Nh number of axes in hight (vertical direction)
% Nw number of axes in width (horizontaldirection)
% gap gaps between the axes in normalized units (0...1)
% or [gap_h gap_w] for different gaps in height and width
% marg_h margins in height in normalized units (0...1)
% or [lower upper] for different lower and upper margins
% marg_w margins in width in normalized units (0...1)
% or [left right] for different left and right margins
%
% out: ha array of handles of the axes objects
% starting from upper left corner, going row-wise as in
% going row-wise as in
%
% Example: ha = tight_subplot(3,2,[.01 .03],[.1 .01],[.01 .01])
% for ii = 1:6; axes(ha(ii)); plot(randn(10,ii)); end
% set(ha(1:4),'XTickLabel',''); set(ha,'YTickLabel','')
% Pekka Kumpulainen 20.6.2010 @tut.fi
% Tampere University of Technology / Automation Science and Engineering
if nargin<3; gap = .02; end
if nargin<4 || isempty(marg_h); marg_h = .05; end
if nargin<5; marg_w = .05; end
if numel(gap)==1;
gap = [gap gap];
end
if numel(marg_w)==1;
marg_w = [marg_w marg_w];
end
if numel(marg_h)==1;
marg_h = [marg_h marg_h];
end
axh = (1-sum(marg_h)-(Nh-1)*gap(1))/Nh;
axw = (1-sum(marg_w)-(Nw-1)*gap(2))/Nw;
py = 1-marg_h(2)-axh;
ha = zeros(Nh*Nw,1);
ii = 0;
for ih = 1:Nh
px = marg_w(1);
for ix = 1:Nw
ii = ii+1;
ha(ii) = axes('Units','normalized', ...
'Position',[px py axw axh], ...
'XTickLabel','', ...
'YTickLabel','');
px = px+axw+gap(2);
end
py = py-axh-gap(1);
end
中心十字规则
clc;
E = [1,0.6,0,0,0,0,0,0,0;0.2,0.6,1,0.6,0.2,0,0,0,0;0,0,0.2,0.6,1,0.6,0.2,0,0;0,0,0,0,0.2,0.6,1,0.6,0.2;0,0,0,0,0,0,0.2,0.6,1];
EC = E;
U = E;
% ----------------------------------------------------------------------------------
% Calculate R
% Deduct relationship
% ----------------------------------------------------------------------------------
R = zeros(81,9);
for i = 1:5
A = E(i,:)';
B = EC(3,:);
C = U(i,:);
AB = min(repmat(A,1,9), repmat(B,9,1));
AB = reshape(AB, [81,1]);
RC = min(repmat(AB,1,9), repmat(C, 81,1));
R = max(R,RC);
end
for i = [1,2,4,5]
A = E(3,:)';
B = EC(i,:);
C = U(i,:);
AB = min(repmat(A,1,9), repmat(B,9,1));
AB = reshape(AB, [81,1]);
RC = min(repmat(AB,1,9), repmat(C, 81,1));
R = max(R,RC);
end
% ----------------------------------------------------------------------------------
% Calculate C
% Relationship induction
% ----------------------------------------------------------------------------------
C = zeros(9,5,5);
for i = 1:5
for j = 1:5
A = E(i,:)';
B = EC(j,:);
AB = min(repmat(A,1,9), repmat(B,9,1));
AB = reshape(AB, [81,1]);
C(:,i,j) = max(min(repmat(AB, 1, 9), R));
end
end
% ----------------------------------------------------------------------------------
% Plot
% ----------------------------------------------------------------------------------
figure(2);clf;
x = (1:9)/9;
ha = tight_subplot(5,5,[.0 .0],[.0 .0],[.0 .0]);
for i = 1:5
for j = 1:5
axes(ha(i*5-5+j));
h = plot(x, C(:,i,j));
ylim([0,1.2]);
xlim([min(x), max(x)]);
set(gca,'XTick',[])
set(gca,'YTick',[])
end
end
最强对角线规则
clc;
E = [1,0.6,0,0,0,0,0,0,0;0.2,0.6,1,0.6,0.2,0,0,0,0;0,0,0.2,0.6,1,0.6,0.2,0,0;0,0,0,0,0.2,0.6,1,0.6,0.2;0,0,0,0,0,0,0.2,0.6,1];
EC = E;
U = E;
% ----------------------------------------------------------------------------------
% Calculate R
% Deduct relationship
% ----------------------------------------------------------------------------------
R = zeros(81,9);
for i = 1:5
A = E(i,:)';
B = EC(i,:);
C = U(i,:);
AB = min(repmat(A,1,9), repmat(B,9,1));
AB = reshape(AB, [81,1]);
RC = min(repmat(AB,1,9), repmat(C, 81,1));
R = max(R,RC);
end
% ----------------------------------------------------------------------------------
% Calculate C
% Relationship induction
% ----------------------------------------------------------------------------------
C = zeros(9,5,5);
for i = 1:5
for j = 1:5
A = E(i,:)';
B = EC(j,:);
AB = min(repmat(A,1,9), repmat(B,9,1));
AB = reshape(AB, [81,1]);
C(:,i,j) = max(min(repmat(AB, 1, 9), R));
end
end
% ----------------------------------------------------------------------------------
% Plot
% ----------------------------------------------------------------------------------
figure(2);clf;
x = (1:9)/9;
ha = tight_subplot(5,5,[.0 .0],[.0 .0],[.0 .0]);
for i = 1:5
for j = 1:5
axes(ha(i*5-5+j));
h = plot(x, C(:,i,j));
ylim([0,1.2]);
xlim([min(x), max(x)]);
set(gca,'XTick',[])
set(gca,'YTick',[])
end
end
模糊合成的定义
设\(P\)是\(U\times V\) 上的模糊关系,\(Q\)是\(V\times W\)上的模糊关系,则\(R\)是\(U\times W\)上的模糊关系,它是\(P\circ Q\)的合成,其隶属函数被定义为
\]
若式中牌子\(\wedge\)代表“取小–\(\min\)”,\(\vee\)代表“取大–\(\max\)”,这种合成关系即为最大值\(\cdot\)最小值合成,合成关系\(R=P\circ Q\)。
示例:
{0.1} & {0.2} & {0.3}
\end{bmatrix},B=\begin{bmatrix}0.1 & 0.2\\
0.3 & 0.4\\
0.5 & 0.6
\end{bmatrix}.
\]
则\(A\circ B=\begin{bmatrix}0.5 & 0.6\\
0.3 & 0.3
\end{bmatrix}\), \(B\circ A=\begin{bmatrix}{0.1} & {0.2} & {0.2}\\
{0.3} & {0.3} & {0.3}\\
{0.4} & {0.5} & {0.5}
\end{bmatrix}\)。
有定义为
\]
模糊推导示例
已知一个双输入单输出的模糊系统,其输入量为\(x\)和\(y\),输出量为\(z\),其输入输出的关系可用如下两条模糊规则描述:
\(R_{1}\):如果\(x\)是\(A_{1}\) and \(y\)是\(B_{1}\),则\(z\)是\(C_{1}\)
\(R_{2}\):如果\(x\)是\(A_{2}\) and \(y\)是\(B_{2}\),则\(z\)是\(C_{2}\)
{A_{1}}=\frac{1}{{a_{1}}}+\frac{{0.5}}{{a_{2}}}+\frac{0}{{a_{3}}} & {B_{1}}=\frac{1}{{b_{1}}}+\frac{{0.6}}{{b_{2}}}+\frac{{0.2}}{{b_{3}}} & {C_{1}}=\frac{1}{{c_{1}}}+\frac{{0.4}}{{c_{2}}}+\frac{0}{{c_{3}}}\\
{A_{2}}=\frac{0}{{a_{1}}}+\frac{{0.5}}{{a_{2}}}+\frac{1}{{a_{3}}} & {B_{2}}=\frac{{0.2}}{{b_{1}}}+\frac{{0.6}}{{b_{2}}}+\frac{1}{{b_{3}}} & {C_{2}}=\frac{0}{{c_{1}}}+\frac{{0.4}}{{c_{2}}}+\frac{1}{{c_{3}}}
\end{array}
\]
(感觉被恶心到了,不知道为什么这儿的array环境始终出不来)
现已知输入\(x\)为\(A'\), \(y\)为\(B’\),试求输出量。
A'=\frac{{0.5}}{{a_{1}}}+\frac{1}{{a_{2}}}+\frac{{0.5}}{{a_{3}}}
& B'=\frac{{0.6}}{{b_{1}}}+\frac{1}{{b_{2}}}+\frac{{0.6}}{{b_{3}}}\\
\end{array}
\]
{A_{1}}\times{B_{1}} & =A_{1}^{T}\circ{B_{1}}={\left[{\begin{array}{ccc}
1 & {0.5} & 0\end{array}}\right]^{T}}\left[{\begin{array}{ccc}
1 & {0.6} & {0.2}\end{array}}\right]\\
& =\left[{\begin{array}{ccc}
1 & {0.6} & {0.2}\\
{0.5} & {0.5} & {0.2}\\
0 & 0 & 0
\end{array}}\right]
\end{aligned}
\]
将其按行展开得(把矩阵压扁为一行向量)
1\\
{0.6}\\
{0.2}\\
{0.5}\\
{0.5}\\
{0.2}\\
0\\
0\\
0
\end{array}}\right]\wedge\left[{\begin{array}{ccc}
1 & {0.4} & 0\end{array}}\right]=\left[{\begin{array}{ccc}
1 & {0.4} & 0\\
1 & {0.4} & 0\\
{0.2} & {0.2} & 0\\
{0.5} & {0.4} & 0\\
{0.5} & {0.4} & 0\\
{0.2} & {0.2} & 0\\
0 & 0 & 0\\
0 & 0 & 0\\
0 & 0 & 0
\end{array}}\right]
\]
同理:
0 & 0 & 0\\
0 & 0 & 0\\
0 & 0 & 0\\
0 & {0.2} & {0.2}\\
0 & {0.4} & {0.5}\\
0 & {0.4} & {0.5}\\
0 & {0.2} & {0.2}\\
0 & {0.4} & {0.6}\\
0 & {0.4} & 1
\end{array}}\right]
\]
总的蕴含关系为
1 & {0.4} & 0\\
{0.6} & {0.4} & 0\\
{0.2} & {0.2} & 0\\
{0.5} & {0.4} & {0.2}\\
{0.5} & {0.4} & {0.5}\\
{0.2} & {0.4} & {0.5}\\
0 & {0.2} & {0.2}\\
0 & {0.4} & {0.6}\\
0 & {0.4} & 1
\end{array}}\right]
\]
计算输入量的模糊集合
{0.5}\\
1\\
{0.5}
\end{array}}\right]\wedge\left[{\begin{array}{ccc}
{0.6} & 1 & {0.6}\end{array}}\right]=\left[{\begin{array}{ccc}
{0.5} & {0.5} & {0.5}\\
{0.6} & 1 & {0.6}\\
{0.5} & {0.5} & {0.5}
\end{array}}\right]
\]
{0.5} & {0.5} & {0.5} & {0.6} & 1 & {0.6} & {0.5} & {0.5} & {0.5}\end{array}}\right]
\]
{0.5} & {0.4} & {0.5}\end{array}}\right]
\]
\]
Fuzzy模糊推导(Matlab实现)的更多相关文章
- java操作elasticsearch实现前缀查询、wildcard、fuzzy模糊查询、ids查询
1.前缀查询(prefix) //prefix前缀查询 @Test public void test15() throws UnknownHostException { //1.指定es集群 clus ...
- 维纳滤波和编码曝光PSF去除运动模糊【matlab】
编码曝光知识 - ostartech - 博客园 https://www.cnblogs.com/wxl845235800/p/8276362.html %%%%%%%%%%%%%%%%%%%%%%% ...
- 使用MATLAB生成模糊控制的离线查询表
1.打开模糊控制工具箱,编辑输入输出变量的隶属度函数和模糊控制规则,如下图所示,导出为fuzzy_control.fis文件. 2.打开Simulink模块,建立下图所示的系统框图,两输入,一输出,处 ...
- es 基于match_phrase的模糊匹配原理及使用
[版权声明]:本文章由danvid发布于http://danvid.cnblogs.com/,如需转载或部分使用请注明出处 在业务中经常会遇到类似数据库的"like"的模糊匹配需求 ...
- .NET平台机器学习资源汇总,有你想要的么?
接触机器学习1年多了,由于只会用C#堆代码,所以只关注.NET平台的资源,一边积累,一边收集,一边学习,所以在本站第101篇博客到来之际,分享给大家.部分用过的 ,会有稍微详细点的说明,其他没用过的, ...
- 17 Great Machine Learning Libraries
17 Great Machine Learning Libraries 08 October 2013 After wonderful feedback on my previous post on ...
- Lucene学习总结之八:Lucene的查询语法,JavaCC及QueryParser
一.Lucene的查询语法 Lucene所支持的查询语法可见http://lucene.apache.org/java/3_0_1/queryparsersyntax.html (1) 语法关键字 + ...
- .NET平台机器学习
.NET平台机器学习资源汇总,有你想要的么? 接触机器学习1年多了,由于只会用C#堆代码,所以只关注.NET平台的资源,一边积累,一边收集,一边学习,所以在本站第101篇博客到来之际,分享给大家.部分 ...
- Lucene的查询语法,JavaCC及QueryParser(1)
http://www.cnblogs.com/forfuture1978/archive/2010/05/08/1730200.html 一.Lucene的查询语法 Lucene所支持的查询语法可见h ...
随机推荐
- 怎么将ETL技术落地
ETL概述 ETL(Extraction-Transformation-Loading)是将业务系统的数据经过抽取.清洗转换之后加载到数据仓库的过程,目的是将企业中的分散.零乱.标准不统一的数据整合到 ...
- webpack 打包 todolist 应用
写在前面的话: 一直想着手动配置webpack实现应用,正好最近这段时间比较空闲,就写了一个通过webpack打包实现todolist的简单应用.本文内容包括:通过webpack打包css,html ...
- java-反编译工具(luyten)
下载地址:https://github.com/deathmarine/Luyten
- python-json与字典的区别
1.字典的类型是字典dict,是一种数据结构:json的类型是字符串str,json是一种格式: 接口测试是传参数payload时有时候是传的字符串,应该将payload的类型改为json 这点要注 ...
- 聊聊缓存淘汰算法-LRU 实现原理
前言 我们常用缓存提升数据查询速度,由于缓存容量有限,当缓存容量到达上限,就需要删除部分数据挪出空间,这样新数据才可以添加进来.缓存数据不能随机删除,一般情况下我们需要根据某种算法删除缓存数据.常用淘 ...
- R的安装
更新时间:2019.09.23 1. 序言 之前曾经用过一段时间的R(一直忍受着原生R那个超级"简洁"的界面),但是后来重装了系统并且学习了Python,就没有再怎么碰过R了.然而 ...
- N042第一周
1.按系列罗列Linux的发行版,并描述不同发行版之间的联系与区别. slackware:SUSE Linux Enterprise Server,OpenSuse debian:ubuntu,dee ...
- [正确配置]win7 PL/SQL 连接Oralce 11g 64位
PL/SQL 版本号:15.0.5.1710 32位 win7 64位系统 instantclient 12.1 32位,PL/SQL不支持64位 关键问题 1.Not logged on 2.没有c ...
- JVM(3) 垃圾收集器与内存分配策略
一.垃圾收集的概念 在Java虚拟机运行时数据区中程序计数器.虚拟机栈和本地方法栈3个区域随线程而生,随线程而灭:栈中的栈帧随着方法的进入和退出而有条不紊地执行着出栈和入栈操作,每一个栈帧中分配多少内 ...
- .Net Core实现健康检查
ASP.NET Core 提供运行状况检查中间件和库,以用于报告应用基础结构组件的运行状况. 运行状况检查由应用程序作为 HTTP 终结点公开. 可以为各种实时监视方案配置运行状况检查终结点: 运行状 ...