洛谷P5322 (BJOI 2019) DP
分析:
1、用 vector<int> v[i] 来存 i 城堡, s 个对手所安排的士兵数量。
2、设 dp[i][j] 表示 i 城堡前,在当前最大派兵量为 j 时所能获得的最大价值。
3、不难想到的是,遍历 s 个对手,再用两个 for 遍历一下该城堡中各个对手的派兵量。然后对于能派的就派去看看能否更新 dp 值。
4、再者我们考虑贪心思想:若第 i 个城堡中, A 选手派出 a 个兵,那至少需要派 2 * a + 1个兵才能对答案有贡献;再者若 B 选手派出 b 个兵,且 b > a ,那么如果能派出 2 * b + 1 个兵的话,则对于 A 选手那边也可以做出贡献。故我们需要使 v[i] 进行排序,这样 dp 时如果后面大的能满足,那么直接使得 (当前以上的选手数量) * i ,得出当前城堡的贡献即可。
此算法的时间复杂度为 O(nms),看上去达到 2 * 108 ,但在 dp 中会有 break 来剪枝 。
此外由于转移方程中只与上一层即 dp[i - 1][] 有关,故可降到一维。
代码如下:
#define IO freopen("test.in","r",stdin),freopen("test.out","w",stdout)
#define inf 0x3f3f3f3f
#define lson root<<1
#define rson root<<1|1
#include <set>
#include <map>
#include <deque>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <bitset>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <cassert>
#include <iostream>
#include <algorithm>
#include <unordered_map>
using namespace std;
int s,n,m;
int a[],dp[];
vector<int> v[];
int main()
{
//IO;
scanf("%d%d%d",&s,&n,&m);
for(int i=;i<=n;i++) a[i]=inf;
int A;
for(int i=;i<=s;i++){
for(int j=;j<=n;j++){
scanf("%d",&A);
v[j].push_back(A);
a[j]=min(a[j],A);
}
}
for(int i=;i<=n;i++) sort(v[i].begin(),v[i].end());
for(int i=;i<=n;i++){
for(int j=m;j>a[i]*;j--){
for(int k=;k<v[i].size();k++){
if(j<=v[i][k]*) break;
dp[j]=max(dp[j],dp[j-(v[i][k]*+)]+(k+)*i);
}
}
}
printf("%d\n",dp[m] );
}
洛谷P5322 (BJOI 2019) DP的更多相关文章
- 洛谷P1108 低价购买[DP | LIS方案数]
题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...
- NOIP2017提高组Day2T2 宝藏 洛谷P3959 状压dp
原文链接https://www.cnblogs.com/zhouzhendong/p/9261079.html 题目传送门 - 洛谷P3959 题目传送门 - Vijos P2032 题意 给定一个 ...
- 洛谷P1244 青蛙过河 DP/思路
又是一道奇奇怪怪的DP(其实是思路题). 原文戳>>https://www.luogu.org/problem/show?pid=1244<< 这题的意思给的挺模糊,需要一定的 ...
- 洛谷P3928 Sequence2(dp,线段树)
题目链接: 洛谷 题目大意在描述底下有.此处不赘述. 明显是个类似于LIS的dp. 令 $dp[i][j]$ 表示: $j=1$ 时表示已经处理了 $i$ 个数,上一个选的数来自序列 $A[0]$ 的 ...
- 洛谷P1140 相似基因 (DP)
洛谷P1140 相似基因 题目背景 大家都知道,基因可以看作一个碱基对序列.它包含了44种核苷酸,简记作A,C,G,TA,C,G,T.生物学家正致力于寻找人类基因的功能,以利用于诊断疾病和发明药物. ...
- 洛谷P2224 [HNOI2001] 产品加工 [DP补完计划,背包]
题目传送门 产品加工 题目描述 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时 ...
- 洛谷1417 烹调方案 dp 贪心
洛谷 1417 dp 传送门 挺有趣的一道dp题目,看上去接近于0/1背包,但是考虑到取每个点时间不同会对最后结果产生影响,因此需要进行预处理 对于物品x和物品y,当时间为p时,先加x后加y的收益为 ...
- 洛谷1387 二维dp 不是特别简略的题解 智商题
洛谷1387 dp题目,刚开始写的时候使用了前缀和加搜索,复杂度大概在O(n ^ 3)级别,感觉这么写还是比较对得起普及/提高-的难度的..后来看了题解区各位大神的题解,开始一脸mb,之后备受启发. ...
- 洛谷 P2657 (数位DP)
### 洛谷 P2657 题目链接 ### 题目大意:给你一个数的范围 [A,B] ,问你这段区间内,有几个数满足如下条件: 1.两个相邻数位上的数的差值至少为 2 . 2.不包含前导零. 很简单的数 ...
- 洛谷 P4124 (数位 DP)
### 洛谷 P4124 题目链接 ### 题目大意: 给你一段区间,让你求满足下列两个条件时的数的个数. 1.至少有 3 个相邻相同数字 (即 111 .1111 .222 等) 2.不能同时出现 ...
随机推荐
- JSON对象转JAVA对象--com.alibaba.fastjson.JSONObject
打印结果:
- Python Weekly 419
文章,教程或讲座 如何用 Dropbox Security 构建用于日志系统的威胁检测和事件响应的工具 https://blogs.dropbox.com/tech/2019/10/how-dropb ...
- React 从入门到进阶之路(二)
在之前的文章中我们介绍了 React 开发的环境搭建及目录介绍和整理,本篇文章将介绍 React 创建组件.JSX 语法.绑定数据和绑定对象. 之前我们已经将项目运行了起来,我们再来看一下目录结构: ...
- Actor模型(分布式编程)
Actor的目的是为了解决分布式编程中的一系列问题.所有消息都是异步交付的,因此将消息发送方与接收方分开,正是由于这种分离,导致actor系统具有内在的并发性:可以不受限制地并行执行任何拥有输入消息的 ...
- C#斐波那契数列求法(比较阶乘和循环所用时间)
using System; namespace ConsoleApp3 { class Program { static void Main(string[] args) { Console.Writ ...
- (转)Polynomial interpolation 多项式插值
原文链接:https://blog.csdn.net/a19990412/article/details/87262531 扩展学习:https://www.sciencedirect.com/t ...
- Go-包
Go-包 包的介绍以及使用 为什么使用包 为了更加好的维护代码 包的位置 必须再GOPATH路径的src中 能导入的内容 导入的内容名称必须是大写字母开头不然无法导入 包 src中的一个文件夹为一个包 ...
- SSM框架之Spring(5)JdbcTemplate及spring事务控制
Spring(5)JdbcTemplate及spring事务控制 ##1.JdbcTmeplate 它是 spring 框架中提供的一个对象,是对原始 Jdbc API 对象的简单封装.spring ...
- SQL Server(MSSQLSERVER) 请求失败或服务未及时响应,有关详细信息,请参见事件日志或其他的适用的错误日志。
转自:https://www.fengjunzi.com/blog-25573.html 问题 有时候sqlserver无法启动了,原因是mssqlserver服务没有启动,当你手动启动时,又出现服务 ...
- ABP入门教程3 - 解决方案
点这里进入ABP入门教程目录 创建项目 点这里进入ABP启动模板 如图操作,我们先生成一个基于.NET Core的MPA(多页面应用).点击"Create my project!" ...