一、深度学习建模与调试流程

先看训练集上的结果怎么样(有些机器学习模型没必要这么做,比如决策树、KNN、Adaboost 啥的,理论上在训练集上一定能做到完全正确,没啥好检查的)

Deep Learning 里面过拟合并不是首要的问题,或者说想要把神经网络训练得好,至少先在训练集上结果非常好,再考虑那些改善过拟合的技术(BN,Dropout 之类的)。否则的话回去检查三个 step 哪里有问题。

Deep Learning 中的方法为了解决两个主要问题而提出:1.训练集做得不好;2.训练集做得好,测试集做得不好

实际应用的时候搞清楚自己面对的问题,选择对应的技巧。

二、激活函数

1. sigmoid

梯度消失:网络很深的时候,靠近输入的 hidden layers 的梯度对损失函数影响很小, 参数更新的就很慢;靠近输出的情况反之。前面几层的参数都还没怎么更新的时候就收敛了。

原因也比较简单,反向传播的时候每经过一层,都会乘上小于 1 的数(sigmoid 函数 会把输入压到 0~1 之间),结果就越来越衰减。

早期用 RBM ,先训练好前面几层。

2. ReLU

计算快;有些生物学的来源;相当于无穷多个不同偏置的sigmoid函数叠加;不存在梯度消失

输出要么是0,要么是输入本身,相当于把原来的网络变成一个 thinner linear network。
 
这样网络还是非线性的吗? —— 是。只要输入的变化比较大,跨越函数分段,网络依旧具有非线性。
好像不可微? —— 确实。但做浮点运算也几乎不会正好要在原点处计算微分,所以直接忽略这个问题。
 
一些变种,亲测过确实会有提升。
 

3. maxout network

每个神经元的激活函数的具体形式,是可以学习来的(不一定非得像 ReLU 那样在原点分段):

哪些神经元要被 group 起来是事先决定的(比如随机2个或者3个一组之类的,几个一组也可以作为一个参数来学习)。

ReLU 就是特殊情况下的 maxout ;但 maxout 可以实现更多可能的激活函数(具体是什么样的函数,根本上是由参数 w 决定的)。

怎么训练?—— 给定一个输入,是能够知道每次取 max,留下的是哪一条路径。训练去掉不作用的神经元之后的“瘦长”的线性网络就行了。
怎么保证参数都能被更新?—— 训练的时候每次给不同的输入数据,去掉的神经元是不一样的。所以一直给不同的输入,差不多每个参数都会被更新到。

三、梯度下降的改进

1. Adagrad 

在梯度下降中已经总结过,在不同方向上需要不同的学习率。

学习率时间衰减 + 从开始到当前时刻的梯度平方和求平均来估计二阶微分的大小趋势

2. RMSProp

error surface 非常复杂,即使在同一个方向上,学习率也需要不断调整。进阶版 Adagrad,动态调整学习率。

在 decaying 累计的先前梯度,通过调整alpha的大小,来选择是考虑先前的梯度(t 时刻之前的累积)多一些,还是当前的梯度(t时刻的)多一些

真的会卡在 local minima 吗?
实际这种情况下的几率很小(by lecun)如果是 local minima 的话,那在每一个方向上都得是“谷底”,参数越多这个几率就越小。
 

3. Momentum

解决一点 local minima 和 plateau 的问题

每次移动的方向不仅考虑当前时刻的梯度,也考虑之前移动的方向(惯性)。
用 vt 来记录 t 时刻移动的方向,v0 = 0;参数更新的公式为:
vt+1  = λv- ηgt
θt+1  = θ+ vt+1
例如:第一次更新 θ = θ+ v= θ+ λv- ηg0 = θ- ηg0
   第二次更新 θ2  = θ+ v= θ+ λv- ηg1 = θ1 + (λ)2v- ληg0 - ηg1 = θ1 - ληg0 - ηg1
 
所以化简的递推公式为  θt+1 = θt - ηgt - ληgt-1 - ... - (λ)tηg0
  
 
另一个角度理解 v:把公式展开,v 其实就是以往所有时刻梯度的 weighted sum,只不过越往前的初始时刻的梯度被考虑的越少( 每往前一个时刻就多乘一个λ),但也依旧对当前要更新的方向存在影响。

4. Adam 

RMSProp + Momentum,利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率。

其中,在迭代初始阶段,m和 v有一个向初值的偏移(过多的偏向了 0),因此可以对一阶和二阶动量做偏置校正 (bias correction),这样每次迭代学习率都有一个确定的范围,参数更新比较平稳。

四、正则化

1. Early Stopping 

机器学习中比较常见的技巧

2. Dropout

神经网络中才会用

随机 kill 掉一定比例的神经元。测试的时候不做,而且还要补偿参数。

为什么要这么做?
如果不乘以 1 - dropout rate,参数其实是比较大的:

Dropout 可以理解成是一种 Ensemble,因为训练时每次都随机干掉一部分网络,但测试时要综合起来全部都用。

深度学习模型训练技巧 Tips for Deep Learning的更多相关文章

  1. 深度学习模型调优方法(Deep Learning学习记录)

    深度学习模型的调优,首先需要对各方面进行评估,主要包括定义函数.模型在训练集和测试集拟合效果.交叉验证.激活函数和优化算法的选择等. 那如何对我们自己的模型进行判断呢?——通过模型训练跑代码,我们可以 ...

  2. AI佳作解读系列(一)——深度学习模型训练痛点及解决方法

    1 模型训练基本步骤 进入了AI领域,学习了手写字识别等几个demo后,就会发现深度学习模型训练是十分关键和有挑战性的.选定了网络结构后,深度学习训练过程基本大同小异,一般分为如下几个步骤 定义算法公 ...

  3. 深度学习与计算机视觉(11)_基于deep learning的快速图像检索系统

    深度学习与计算机视觉(11)_基于deep learning的快速图像检索系统 作者:寒小阳 时间:2016年3月. 出处:http://blog.csdn.net/han_xiaoyang/arti ...

  4. TensorFlow和深度学习入门教程(TensorFlow and deep learning without a PhD)【转】

    本文转载自:https://blog.csdn.net/xummgg/article/details/69214366 前言 上月导师在组会上交我们用tensorflow写深度学习和卷积神经网络,并把 ...

  5. TensorFlow和深度学习新手教程(TensorFlow and deep learning without a PhD)

    前言 上月导师在组会上交我们用tensorflow写深度学习和卷积神经网络.并把其PPT的參考学习资料给了我们, 这是codelabs上的教程:<TensorFlow and deep lear ...

  6. 深度学习FPGA实现基础知识10(Deep Learning(深度学习)卷积神经网络(Convolutional Neural Network,CNN))

    需求说明:深度学习FPGA实现知识储备 来自:http://blog.csdn.net/stdcoutzyx/article/details/41596663 说明:图文并茂,言简意赅. 自今年七月份 ...

  7. 用 Java 训练深度学习模型,原来可以这么简单!

    本文适合有 Java 基础的人群 作者:DJL-Keerthan&Lanking HelloGitHub 推出的<讲解开源项目> 系列.这一期是由亚马逊工程师:Keerthan V ...

  8. 利用 TFLearn 快速搭建经典深度学习模型

      利用 TFLearn 快速搭建经典深度学习模型 使用 TensorFlow 一个最大的好处是可以用各种运算符(Ops)灵活构建计算图,同时可以支持自定义运算符(见本公众号早期文章<Tenso ...

  9. 在NLP中深度学习模型何时需要树形结构?

    在NLP中深度学习模型何时需要树形结构? 前段时间阅读了Jiwei Li等人[1]在EMNLP2015上发表的论文<When Are Tree Structures Necessary for ...

随机推荐

  1. 【搜索引擎】 PostgreSQL 10 实时全文检索和分词、相似搜索、模糊匹配实现类似Google搜索自动提示

    需求分析 要通过PostgreSQL实现类似Google搜索自动提示的功能,例如要实现一个查询海量数据中的商品名字,每次输入就提示用户各种相关搜索选项,例如淘宝.京东等电商查询 思路 这个功能可以用 ...

  2. QT知识整理

    1.connect函数的SIGNAL可以是按键.定时器.其他对象的信号.如果是其他对象的信号,对象必须要在当前类中实例化. 2.Qt数据类型转换 1)int转QStringint a=10;QStri ...

  3. Everything-1.4.1.917 绿色版

    Everything是一款搜索软件,可以瞬间搜索到你需要的文件.如果你用过Windows自带的搜索工具.Total Commander的搜索.Google 桌面搜索或百度硬盘搜索,都因为速度或其他原因 ...

  4. java unicode补充字符带来的码点和代码单元问题

    码点与代码单元 java string有两种判定字符的方式,一种是以码点,一种以代码单元,简单讲,码点就是真正的字符,代码单元是按大小即char型长度2个字节划分字符串. 所以length和chara ...

  5. WPF 入门笔记之控件内容控件

    一.控件类 在WPF中和用户交互的元素,或者说.能够接受焦点,并且接收键盘鼠标输入的元素所有的控件都继承于Control类. 1. 常用属性: 1.1 Foreground:前景画刷/前景色(文本颜色 ...

  6. Golang 高效实践之并发实践

    前言 在我前面一篇文章Golang受欢迎的原因中已经提到,Golang是在语言层面(runtime)就支持了并发模型.那么作为编程人员,我们在实践Golang的并发编程时,又有什么需要注意的点呢?下面 ...

  7. 微信小程序开发--组件(3)

    一.radio <radio-group class="radio-group" bindchange="radioChange"> <lab ...

  8. Thread-Per-Message设计模式

    import java.util.concurrent.ThreadLocalRandom; import java.util.concurrent.TimeUnit; public class Te ...

  9. 个人永久性免费-Excel催化剂功能第35波-Excel版最全单位换算,从此不用到处百度找答案

    全球化的今天,相信我们经常可以有机会接触到外国的产品,同时我们也有许多产品出口到外国,国与国之间的度量单位不一,经常需要做一些转换运算,一般网页提供这样的转换,但没有什么比在Excel上计算来得更为方 ...

  10. HTML介绍和标签

    1.HTML介绍 1.概述 html不是一种编程语言,是一种描述性的标记语言,用于描述超文本内容的显示方式.比如字体,颜色,大小等. 超文本:音频,视频,图片称为超文本. 标记:<英文单词或者字 ...