【2019.8.7 慈溪模拟赛 T2】环上随机点(ran)(自然算法)
简单声明
我是蒟蒻不会推式子。。。
所以我用的是乱搞做法。。。
大自然的选择
这里我用的乱搞做法被闪指导赐名为“自然算法”,对于这种输入信息很少的概率题一般都很适用。
比如此题,对于一组\(n,m\),我们可以进行\(10^6\)次随机,每次随机\(n\)个\(0\sim1\)之间的实数表示这个点在圆上的位置,然后我们暴力判断,用一个变量\(t\)记录下合法次数。
然后我们输出\(\frac t{10^6}\)就能得出大致概率了。
找规律
显然,上面这个“自然算法”精度误差较大,且我们要输出的是取模意义下的结果而非实数。
但是,该算法输出的结果,已经够我们找规律了。
首先,我们输入\(n=2,m=2,3,4,5\)可得\(1,\frac23,\frac12,\frac25\),即\(\frac2m\)。
然后,我们输入\(n=3,m=2,3,4,5\)可得\(\frac34,\frac13,\frac3{16},\frac3{25}\),即\(\frac 3{m^2}\)。
这时候我们似乎就可以大力猜测,答案就是\(\frac n{m^{n-1}}\)。
再代几组数据用“自然算法”验证,发现都符合这个结论,于是我们就可以姑且认为它正确了。
这样就过了。其实就是乱搞。
代码
“自然算法”:
#include<bits/stdc++.h>
#define T 1000000
#define R() 1.0*rand()/RAND_MAX//随机实数
using namespace std;
int n,m;double a[(int)1e7+5];
int main()
{
srand(time(NULL));int t=0;scanf("%d%d",&n,&m);for(int i=1;i<=T;++i)
{
for(int j=1;j<=n;++j) a[j]=R();sort(a+1,a+n+1);//随机n个点
double Mx=a[1]-a[n]+1;for(int j=1;j^n;++j) a[j+1]-a[j]>Mx&&(Mx=a[j+1]-a[j]);
1-Mx<1.0/m&&++t;//统计合法情况数
}return printf("%.7lf",1.0*t/T),0;
}
最终代码:
#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define X 998244353
#define Qinv(x) Qpow(x,X-2)
using namespace std;
int n,m;
I int Qpow(RI x,RI y) {RI t=1;W(y) y&1&&(t=1LL*t*x%X),x=1LL*x*x%X,y>>=1;return t;}
int main()
{
freopen("ran.in","r",stdin),freopen("ran.out","w",stdout);
return scanf("%d%d",&n,&m),printf("%d",1LL*n*Qpow(Qinv(m),n-1)%X),0;//直接输出
}
【2019.8.7 慈溪模拟赛 T2】环上随机点(ran)(自然算法)的更多相关文章
- 【2019.8.15 慈溪模拟赛 T2】组合数(binom)(卢卡斯定理+高维前缀和)
卢卡斯定理 题目中说到\(p\)是质数. 而此时要求组合数向质数取模的结果,就可以用卢卡斯定理: \[C_x^y=C_{x\ div\ p}^{y\ div\ p}\cdot C_{x\ mod\ p ...
- 【2019.8.6 慈溪模拟赛 T2】树上路径(tree)(Trie)
从暴力考虑转化题意 考虑最暴力的做法,我们枚举路径的两端,然后采用类似求树上路径长度的做法,计算两点到根的贡献,然后除去\(LCA\)到根的贡献两次. 即,设\(v_i\)为\(i\)到根路径上的边权 ...
- 【2019.8.8 慈溪模拟赛 T2】query(query)(分治+分类讨论)
分治 首先,我们考虑分治处理此问题. 每次处理区间\([l,r]\)时,我们先处理完\([l,mid]\)和\([mid+1,r]\)两个区间的答案,然后我们再考虑计算左区间与右区间之间的答案. 处理 ...
- 【2019.8.9 慈溪模拟赛 T2】摘Galo(b)(树上背包)
树上背包 这应该是一道树上背包裸题吧. 众所周知,树上背包的朴素\(DP\)是\(O(nm^2)\)的. 但对于这种体积全为\(1\)的树上背包,我们可以通过记\(Size\)优化转移时的循环上界,做 ...
- 【2019.8.12 慈溪模拟赛 T2】汪哥图(wang)(前缀和)
森林 考虑到题目中给出条件两点间至多只有一条路径. 就可以发现,这是一个森林. 而森林有一个很有用的性质. 考虑对于一棵树,点数-边数=\(1\). 因此对于一个森林,点数-边数=连通块个数. 所以, ...
- 【2019.8.14 慈溪模拟赛 T2】黑心老板(gamble)(2-SAT)
\(2-SAT\) 考虑每个点只能选择\(R\)或\(B\),可以看作选\(0\)或\(1\). 然后对于给出的关系式,若其中一个位置满足关系式,另两个位置就必须不满足关系式,这样就可以对于每个关系式 ...
- 【2019.8.11上午 慈溪模拟赛 T2】十七公斤重的文明(seventeen)(奇偶性讨论+动态规划)
题意转化 考虑我们对于集合中每一个\(i\),若\(i-2,i+k\)存在,就向其连边. 那么,一个合法的集合就需要满足,不会存在环. 这样问题转化到了图上,就变得具体了许多,也就更容易考虑.求解了. ...
- 【2019.8.11下午 慈溪模拟赛 T2】数数(gcd)(分块+枚举因数)
莫比乌斯反演 考虑先推式子: \[\sum_{i=l}^r[gcd(a_i,G)=1]\] \[\sum_{i=l}^r\sum_{p|a_i,p|G}\mu(p)\] \[\sum_{p|G}\mu ...
- 【2019.8.15 慈溪模拟赛 T1】插头(plugin)(二分+贪心)
二分 首先,可以发现,最后的答案显然满足可二分性,因此我们可以二分答案. 然后,我们只要贪心,就可以验证了. 贪心 不难发现,肯定会优先选择能提供更多插座的排插,且在确定充电器个数的情况下,肯定选择能 ...
随机推荐
- Java程序猿想要月薪2万+必须必备哪些技术?
现在程序员是比较紧俏的一个岗位,其实可以写代码的人许多,但是为什么程序员还那么缺呢? 除了需求大以外,还有一个原因就是,实在合格的程序员确实比较少. 想要成为一个合格的程序员,咱们需求满意以下几点要求 ...
- Python解释器和Python集成环境小结
目录 一.执行Python程序的两种方式 1.1 交互式 1.2 命令行式 二.执行Python程序的两种IDE 2.1 Pycharm 2.2 Jupyter 一.执行Python程序的两种方式 1 ...
- 说说 Vue.js 中的 v-cloak 指令
可以使用 v-cloak 指令设置样式,这些样式会在 Vue 实例编译结束时,从绑定的 HTML 元素上被移除. 当网络较慢,网页还在加载 Vue.js ,而导致 Vue 来不及渲染,这时页面就会显示 ...
- 【Linux命令】文本文件编辑命令10个(cat、more、less、head、tail、tr、wc、stat、cut、diff)
目录 cat查看文档 more可分页查看文档 less相比较more功能更强大 head查看文档的前N行 tail查看文档的后N行或试试刷新查看 tr替换文本字符 wc统计文本行数 stat查看文档存 ...
- Django JsonResponse 不自动设置 cookie 的解决方案
[背景] 目前在做一个前后端分离的 web 项目,后端使用的是 django 框架,所有的 API 都只返回 json :就在这个过程中遇到了一个问题,那就是对于所有的 JsonResponse dj ...
- Docker - 快速入门(一)
概念 下面这三个概念一开始可能不好理解,等大家跟着博客把例子做完了,再回头来看应该就能理解了. docker image # docker镜像 镜像就是一个只读的模板.镜像可以用来创建Docker容 ...
- 使用maven快速入门
Maven 基础知识 官网: 传送门 Maven 项目结构 $ MavenProject |-- pom.xml |-- src | |-- main | | `-- java | | `-- res ...
- C#数组1
using System; namespace ConsoleApp3 { class Program { static void Main(string[] args) { , , , , , }; ...
- 【OOM】解决思路
一.什么是OOM? OOM就是outOfMemory,内存溢出!可能是每一个java人员都能遇到的问题!原因是堆中有太多的存活对象(GC-ROOT可达),占满了堆空间. 二.怎么解决? 1.拿到内存溢 ...
- Cesium-空间分析之通视分析(附源码下载)
Cesium Cesium 是一款面向三维地球和地图的,世界级的JavaScript开源产品.它提供了基于JavaScript语言的开发包,方便用户快速搭建一款零插件的虚拟地球Web应用,并在性能,精 ...