森林

考虑到题目中给出条件两点间至多只有一条路径。

就可以发现,这是一个森林。

而森林有一个很有用的性质。

考虑对于一棵树,点数-边数=\(1\)。

因此对于一个森林,点数-边数=连通块个数。

所以,我们只要前缀和求出询问区间内的点数和边数,就可以计算出连通块个数了。

注意边数要分两个方向讨论,然后询问时注意防止越界。

代码

#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 2000
using namespace std;
int n,m,Qt,a[N+5][N+5];
class FastIO
{
private:
#define FS 100000
#define tc() (A==B&&(B=(A=FI)+fread(FI,1,FS,stdin),A==B)?EOF:*A++)
#define pc(c) (C==E&&(clear(),0),*C++=c)
#define tn (x<<3)+(x<<1)
#define D isdigit(c=tc())
int T;char c,*A,*B,*C,*E,FI[FS],FO[FS],S[FS];
public:
I FastIO() {A=B=FI,C=FO,E=FO+FS;}
Tp I void read(Ty& x) {x=0;W(!D);W(x=tn+(c&15),D);}
Tp I void readD(Ty& x) {W(!D);x=c&15;}
Tp I void write(Ty x) {W(S[++T]=x%10+48,x/=10);W(T) pc(S[T--]);}
Tp I void writeln(Con Ty& x) {write(x),pc('\n');}
I void clear() {fwrite(FO,1,C-FO,stdout),C=FO;}
}F;
class SuffixSumSolver
{
private:
int d[N+5][N+5],e1[N+5][N+5],e2[N+5][N+5];
public:
I void Solve()
{
RI i,j,xx,yx,xy,yy,td,te1,te2;for(i=1;i<=n;++i) for(j=1;j<=m;++j)//预处理前缀和
d[i][j]=d[i-1][j]+d[i][j-1]-d[i-1][j-1]+a[i][j],//点数
e1[i][j]=e1[i-1][j]+e1[i][j-1]-e1[i-1][j-1]+(a[i][j]&a[i-1][j]),//向上的边
e2[i][j]=e2[i-1][j]+e2[i][j-1]-e2[i-1][j-1]+(a[i][j]&a[i][j-1]);//向左的边
W(Qt--) F.read(xx),F.read(yx),F.read(xy),F.read(yy),//处理询问
td=d[xy][yy]-d[xx-1][yy]-d[xy][yx-1]+d[xx-1][yx-1],//点数
te1=e1[xy][yy]-e1[xx][yy]-e1[xy][yx-1]+e1[xx][yx-1],//向上的边,最上面一行不能选
te2=e2[xy][yy]-e2[xx-1][yy]-e2[xy][yx]+e2[xx-1][yx],//向左的边,最左边一列不能选
F.writeln(td-te1-te2);//点数-边数=连通块个数
}
}S;
int main()
{
freopen("wang.in","r",stdin),freopen("wang.out","w",stdout);
RI i,j;F.read(n),F.read(m),F.read(Qt);
for(i=1;i<=n;++i) for(j=1;j<=m;++j) F.readD(a[i][j]);
return S.Solve(),F.clear(),0;
}

【2019.8.12 慈溪模拟赛 T2】汪哥图(wang)(前缀和)的更多相关文章

  1. 【2019.8.15 慈溪模拟赛 T2】组合数(binom)(卢卡斯定理+高维前缀和)

    卢卡斯定理 题目中说到\(p\)是质数. 而此时要求组合数向质数取模的结果,就可以用卢卡斯定理: \[C_x^y=C_{x\ div\ p}^{y\ div\ p}\cdot C_{x\ mod\ p ...

  2. 【2019.8.6 慈溪模拟赛 T2】树上路径(tree)(Trie)

    从暴力考虑转化题意 考虑最暴力的做法,我们枚举路径的两端,然后采用类似求树上路径长度的做法,计算两点到根的贡献,然后除去\(LCA\)到根的贡献两次. 即,设\(v_i\)为\(i\)到根路径上的边权 ...

  3. 【2019.8.7 慈溪模拟赛 T2】环上随机点(ran)(自然算法)

    简单声明 我是蒟蒻不会推式子... 所以我用的是乱搞做法... 大自然的选择 这里我用的乱搞做法被闪指导赐名为"自然算法",对于这种输入信息很少的概率题一般都很适用. 比如此题,对 ...

  4. 【2019.8.8 慈溪模拟赛 T2】query(query)(分治+分类讨论)

    分治 首先,我们考虑分治处理此问题. 每次处理区间\([l,r]\)时,我们先处理完\([l,mid]\)和\([mid+1,r]\)两个区间的答案,然后我们再考虑计算左区间与右区间之间的答案. 处理 ...

  5. 【2019.8.9 慈溪模拟赛 T2】摘Galo(b)(树上背包)

    树上背包 这应该是一道树上背包裸题吧. 众所周知,树上背包的朴素\(DP\)是\(O(nm^2)\)的. 但对于这种体积全为\(1\)的树上背包,我们可以通过记\(Size\)优化转移时的循环上界,做 ...

  6. 【2019.8.12 慈溪模拟赛 T1】钥匙(key)(暴力DP)

    暴力\(DP\) 这题做法很多,有\(O(n^2)\)的,有\(O(n^2logn)\)的,还有徐教练的\(O(nlogn)\)的,甚至还有\(bzt\)的二分+线段树优化建图的费用流. 我懒了点,反 ...

  7. 【2019.8.14 慈溪模拟赛 T2】黑心老板(gamble)(2-SAT)

    \(2-SAT\) 考虑每个点只能选择\(R\)或\(B\),可以看作选\(0\)或\(1\). 然后对于给出的关系式,若其中一个位置满足关系式,另两个位置就必须不满足关系式,这样就可以对于每个关系式 ...

  8. 【2019.8.11下午 慈溪模拟赛 T2】数数(gcd)(分块+枚举因数)

    莫比乌斯反演 考虑先推式子: \[\sum_{i=l}^r[gcd(a_i,G)=1]\] \[\sum_{i=l}^r\sum_{p|a_i,p|G}\mu(p)\] \[\sum_{p|G}\mu ...

  9. 【2019.8.11上午 慈溪模拟赛 T2】十七公斤重的文明(seventeen)(奇偶性讨论+动态规划)

    题意转化 考虑我们对于集合中每一个\(i\),若\(i-2,i+k\)存在,就向其连边. 那么,一个合法的集合就需要满足,不会存在环. 这样问题转化到了图上,就变得具体了许多,也就更容易考虑.求解了. ...

随机推荐

  1. SP2713 GSS4 - Can you answer these queries IV 分块

    问题描述 LG-SP2713 题解 分块,区间开根. 如果一块的最大值是 \(1\) ,那么这个块就不用开根了. 如果最大值不是 \(1\) ,直接暴力开就好了. \(\mathrm{Code}\) ...

  2. npm install 提示 `gyp: No Xcode or CLT version detected!` MacOS 10.15

    https://github.com/nodejs/node-gyp/issues/569 https://github.com/nodejs/node-gyp/issues/1927 解决链接:ht ...

  3. 使用canal增量同步mysql数据库信息到ElasticSearch

    本文介绍如何使用canal增量同步mysql数据库信息到ElasticSearch.(注意:是增量!!!) 1.简介 1.1 canal介绍 Canal是一个基于MySQL二进制日志的高性能数据同步系 ...

  4. vscode 笔记

    设置中文 查看 --> 命令面板 --> 输入: change display language , 安装 中文, 重启 vscode . markdown 转 pdf 安装 Markdo ...

  5. 1+x证书Web前端开发HTML+CSS专项练习测试题(八)

    1+x证书Web前端开发HTML+CSS专项练习测试题(八) 官方QQ群 1+x 证书 Web 前端开发 HTML+CSS 专项练习测试题(八) http://blog.zh66.club/index ...

  6. Vue ---- ajax cookies 插件安装 跨域问题 element-ui bootscript 导入

    目录 补充: 流式布局样式 Django国际化配置 Django的TODO注释 Vue的ajax插件:axios 安装 配置 如何使用? Vue的cookies插件:cookies 安装: main. ...

  7. IT兄弟连 Java语法教程 数组 数组的初始化

    Java语言中数组必须先初始化,然后才可以使用.所谓初始化,就是为数组的数组元素分配内存空间,并为每个数组元素赋初始值. 这时有人会问,能不能只分配内存空间,不赋初始值呢?答案是肯定不行的,一旦为数组 ...

  8. .NET 使用OLEDB导入Excel数据

    /** * *在本章节中主要讲解的是如何使用OLEDB将Excel中的数据导入到数据库中 * */using System; using System.Data; using System.Data. ...

  9. 死磕 java同步系列之AQS终篇(面试)

    问题 (1)AQS的定位? (2)AQS的重要组成部分? (3)AQS运用的设计模式? (4)AQS的总体流程? 简介 AQS的全称是AbstractQueuedSynchronizer,它的定位是为 ...

  10. .net core的服务器模式和工作站模式

    来源:济南小老虎 .NET Core是一个开源通用的开发框架,具有跨平台能力,我们在享受其性能飙升的同时,也面临了一些问题.通过观察 NetCore 程序的线上运行情况发现 ,负载高的情况下应用程序占 ...