让你的AI模型尽可能的靠近数据源
来源:Redislabs
作者:Pieter Cailliau、LucaAntiga
翻译:Kevin (公众号:中间件小哥)
简介
今天我们发布了一个 RedisAI 的预览版本,预集成了[tensor]werk组件。RedisAI 是一个可以服务 tensors 任务和执行深度学习任务的 Redis 模块。在这篇博客中,我们将介绍这个新模块的功能,并解释我们为什么会认为它能颠覆机器学习(ML)、深度学习(DL)的解决方案。
RedisAI 的产生有两大原因:首先,把数据迁移到执行 AI 模型的主机上成本很高,并且对实时性的体验很大的影响;其次,Serving 模型一直以来都是 AI 领域中 DevOps 的挑战。我们构建 RedisAI 的目的,是让用户可以在不搬迁Redis 多节点数据的情况下,也能很好地服务、更新并集成自己的模型。
数据位置很重要
为了证明运行机器学习、深度学习模型中数据位置的重要性,我们举一个聊天机器人的例子。聊天机器人通常使用递归神经网络模型(RNN),来解决一对一(seq2seq)用户问答场景。更高级的模型使用两个输入向量、两个输出向量,并以数字中间状态向量的方式来保存对话的上下文。模型使用用户最后的消息作为输入,中间状态代表对话的历史,而它的输出是对用户消息和新中间状态的响应。
为了支持用户自定义的交互,这个中间状态必须要保存在数据库中,所以 Redis +RedisAI是一个非常好的选择,这里将传统方案和 RedisAI 方案做一个对比。
1、传统方案
使用 Flask 应用或其它方案,集成 Spark 来构建一个聊天机器人。当收到用户对话消息时,服务端需要从 Redis 中获取到中间的状态。因为在 Redis 中没有原生的数据类型可用于 tensor,因此需要先进行反序列化,并且在运行递归神经网络模型(RNN)之后,保证实时的中间状态可以再序列化后保存到 Redis 中。
考虑到 RNN 的时间复杂度,数据序列化/反序列化上 CPU 的开销和巨大的网络开销,我们需要一个更优的解决方案来保证用户体验。
2、RedisAI 方案
在 RedisAI 中,我们提供了一种叫 Tensor 的数据类型,只需使用一系列简单的命令,即可在主流的客户端中对 Tensor向量进行操作。同时,我们还为模型的运行时特性提供了另外两种数据类型:Models 和 Scripts。
Models 命令与运行的设备(CPU 或 GPU)和后端自定义的参数有关。RedisAI 内置了主流的机器学习框架,如 TensorFlow、Pytorch 等,并很快能够支持 ONNX Runtime 框架,同时增加了对传统机器学习模型的支持。然而,很棒的是,执行 Model 的命令对其后端是不感知的:
AI.MODELRUN model_key INPUTS input_key1 … OUTPUTS output_key1 .. |
这允许用户将后端选择(通常由数据专家来决定)和应用服务解耦合开来,置换模型只需要设置一个新的键值即可,非常简单。RedisAI 管理所有在模型处理队列中的请求,并在单独的线程中执行,这样保障了 Redis依然可以响应其它正常的请求。Scripts 命令可以在 CPU 或GPU 上执行,并允许用户使用 TorchScript 来操作Tensors 向量,TorchScript 是一个可操作 Tensors 向量的类 Python 自定义语言。这可以帮助用户在执行模型前对数据进行预处理,也可以用在对结果进行后处理的场景中,例如通过集成不同的模型来提高性能。
我们计划未来通过 DAG 命令支持批量执行命令,这会允许用户在一个原子性操作中批量执行多个 RedisAI 命令。例如在不同的设备上运行一个模型的不同实例,通过脚本对执行结果做平均预测。使用 DAG 命令,就可并行地进行计算,再执行聚合操作。如果需要全量且更深的特性列表,可以访问 redisai.io。新的架构可以简化为:
模型服务可以更简单
在生产环境中,使用 Jupyter notebooks 来编写代码并将其部署在Flask 应用并不是最优方案。用户如何确定自己的资源是最佳的呢?如果用户主机宕机之后,上述聊天机器人的中间状态会发生什么呢?用户可能会重复造轮子,实现已有的 Redis 功能来解决问题。另外,由于组合方案的复杂度往往超出预期,固执地坚持原有的解决方案也会非常有挑战性。RedisAI 通过 Redis 企业级的数据存储方案,支持深度学习所需要的 Tensors、Models 和 Scripts等数据类型,很好的实现了 Redis 和 AI 模型的深度整合。如果需要扩展模型的计算能力,只需要简单的对Redis 集群进行扩容即可,所以用户可以在生产环境中增加尽可能多的模型,从而降低基础设施成本和总体成本。最后,RedisAI 很好地适应了现有的 Redis 生态,允许用户执行脚本来预处理、后处理用户数据,可使用 RedisGear 对数据结构做正确的转换,可使用RedisGraph 来保持数据处于最新的状态。
结论和后续计划
1、短期内,我们希望使用RedisAI 在支持 3 种主流后端(Tensorflow、Pytorch 和 ONNX Runtime)的情况下,尽快稳定下来并达到稳定状态。
2、我们希望可以动态加载这些后端,用户可以自定义的加载指定的后端。例如,这将允许用户使用Tensorflow Lite 处理边缘用例。3、计划实现自动调度功能,可以实现在同一模型中实现不同队列的自动合并。4、RedisAI会统计模型的运行数据,用于衡量模型的执行情况。
5、完成上文中解释的DAG 特性。
让你的AI模型尽可能的靠近数据源的更多相关文章
- CANN5.0黑科技解密 | 别眨眼!缩小隧道,让你的AI模型“身轻如燕”!
摘要:CANN作为释放昇腾硬件算力的关键平台,通过深耕先进的模型压缩技术,聚力打造AMCT模型压缩工具,在保证模型精度前提下,不遗余力地降低模型的存储空间和计算量. 随着深度学习的发展,推理模型巨大的 ...
- AI 音辨世界:艺术小白的我,靠这个AI模型,速识音乐流派选择音乐 ⛵
作者:韩信子@ShowMeAI 数据分析实战系列:https://www.showmeai.tech/tutorials/40 机器学习实战系列:https://www.showmeai.tech/t ...
- Microsoft宣布为Power BI提供AI模型构建器,关键驱动程序分析和Azure机器学习集成
微软的Power BI现在是一种正在大量结合人工智能(AI)的商业分析服务,它使用户无需编码经验或深厚的技术专长就能够创建报告,仪表板等.近日西雅图公司宣布推出几款新的AI功能,包括图像识别和文本分析 ...
- 炸金花游戏(3)--基于EV(期望收益)的简单AI模型
前言: 炸金花这款游戏, 从技术的角度来说, 比德州差了很多. 所以他的AI模型也相对简单一些. 本文从EV(期望收益)的角度, 来尝试构建一个简单的炸金花AI. 相关文章: 德州扑克AI--Prog ...
- 最强云硬盘来了,让AI模型迭代从1周缩短到1天
摘要:华为云擎天架构+ Flash-Native存储引擎+低时延CurreNET,数据存储和处理还有啥担心的? 虽然我们已经进入大数据时代,但多数企业数据利用率只有10%,数据的价值没有得到充分释放. ...
- 如何借助 JuiceFS 为 AI 模型训练提速 7 倍
背景 海量且优质的数据集是一个好的 AI 模型的基石之一,如何存储.管理这些数据集,以及在模型训练时提升 I/O 效率一直都是 AI 平台工程师和算法科学家特别关注的事情.不论是单机训练还是分布式训练 ...
- AI模型运维——NVIDIA驱动、cuda、cudnn、nccl安装
目前大部分使用GPU的AI模型,都使用的英伟达这套. 需要注意的是,驱动.cuda.cudnn版本需要一一对应,高低版本互不兼容. 驱动和cuda对应关系:https://docs.nvidia.co ...
- 二手车价格预测 | 构建AI模型并部署Web应用 ⛵
作者:韩信子@ShowMeAI 数据分析实战系列:https://www.showmeai.tech/tutorials/40 机器学习实战系列:https://www.showmeai.tech/t ...
- 基于语法树和概率的AI模型
语法树是句子结构的图形表示,它代表了句子的推导结果,有利于理解句子语法结构的层次.简单说,语法树就是按照某一规则进行推导时所形成的树. 有了语法树,我们就可以根据其规则自动生成语句,但是语法树本身是死 ...
随机推荐
- 基于sparksql collect_list的udf定义踩坑
多条collect_list,然后将collect_list的结果concat起来,最初使用的是concat_ws(),但是发现超过4个collect_list就会报错, select concat_ ...
- 剑指offer总结一:字符、数字重复问题
问题1:字符串中第一个不重复的字符 题目描述 请实现一个函数用来找出字符流中第一个只出现一次的字符.例如,当从字符流中只读出前两个字符"go"时,第一个只出现一次的字符是" ...
- Linux 终端命令格式
Linux 终端命令格式 一.目标 了解终端命令格式 知道如何查阅终端命令帮助信息 二. 终端命令格式 command [-options] [parameter] 说明: command:命令名,相 ...
- Linux Web集群架构详细(亲测可用!!!)
注意:WEB服务器和数据库需要分离,同时WEB服务器也需要编译安装MySQL. 做集群架构的重要思想就是找到主干,从主干区域向外延展. WEB服务器: apache nginx 本地做三个产品 de ...
- PythonI/O进阶学习笔记_2.魔法函数
前言: 本文一切观点和测试代码是在python3的基础上. Content: 1.什么是魔法函数,魔法函数__getitem__在python中应用. 2.python的数据模型和数据模型这种设计对p ...
- Scratch 3下载,最新版Scratch下载,macOS、Windows版
下载地址:https://scratch.mit.edu/download 废话不多说,先上下载地址! 之前小弟学习Scratch,用的2.0发现诸多BUG,到度娘想下最新版却没有发现一篇比较正经的文 ...
- 前端通过Blob实现文件下载
最近遇到一个需求,需要将页面中的配置信息下载下来供用户方便使用,以前这个场景的需求有时候会放到后端处理,然后给返回一个下载链接.其实并不需要这么麻烦,这样既增大了服务器的负载,也让用户产生了没有必要的 ...
- JUC包Lock机制的支持--AQS
在上一次总结中,提到了JUC包下使用Lock接口实现同步的方法,以及和Synchronized关键字的一些比较,那么使用Lock完成锁机制的底层支持又是什么呢?总结如下: 1 AQS是什么 AQS是一 ...
- springboot事务中的一些坑
springboot开启声明式事务方式 在Application启动类中加入注解@EnableTransactionManagement(mode = AdviceMode.PROXY) 在需要加入事 ...
- HDU 5451 Best Solver 数论 快速幂 2015沈阳icpc
Best Solver Time Limit: 1500/1000 MS (Java/Others) Memory Limit: 65535/102400 K (Java/Others)Tota ...