来源:Redislabs
作者:Pieter Cailliau、LucaAntiga
翻译:Kevin (公众号:中间件小哥)

简介

今天我们发布了一个 RedisAI 的预览版本,预集成了[tensor]werk组件。RedisAI 是一个可以服务 tensors 任务和执行深度学习任务的 Redis 模块。在这篇博客中,我们将介绍这个新模块的功能,并解释我们为什么会认为它能颠覆机器学习(ML)、深度学习(DL)的解决方案。
RedisAI 的产生有两大原因:首先,把数据迁移到执行 AI 模型的主机上成本很高,并且对实时性的体验很大的影响;其次,Serving 模型一直以来都是 AI 领域中 DevOps 的挑战。我们构建 RedisAI 的目的,是让用户可以在不搬迁Redis 多节点数据的情况下,也能很好地服务、更新并集成自己的模型。

数据位置很重要

为了证明运行机器学习、深度学习模型中数据位置的重要性,我们举一个聊天机器人的例子。聊天机器人通常使用递归神经网络模型(RNN),来解决一对一(seq2seq)用户问答场景。更高级的模型使用两个输入向量、两个输出向量,并以数字中间状态向量的方式来保存对话的上下文。模型使用用户最后的消息作为输入,中间状态代表对话的历史,而它的输出是对用户消息和新中间状态的响应。

为了支持用户自定义的交互,这个中间状态必须要保存在数据库中,所以 Redis +RedisAI是一个非常好的选择,这里将传统方案和 RedisAI 方案做一个对比。

1、传统方案

使用 Flask 应用或其它方案,集成 Spark 来构建一个聊天机器人。当收到用户对话消息时,服务端需要从 Redis 中获取到中间的状态。因为在 Redis 中没有原生的数据类型可用于 tensor,因此需要先进行反序列化,并且在运行递归神经网络模型(RNN)之后,保证实时的中间状态可以再序列化后保存到 Redis 中。

考虑到 RNN 的时间复杂度,数据序列化/反序列化上 CPU 的开销和巨大的网络开销,我们需要一个更优的解决方案来保证用户体验。

2、RedisAI 方案
在 RedisAI 中,我们提供了一种叫 Tensor 的数据类型,只需使用一系列简单的命令,即可在主流的客户端中对 Tensor向量进行操作。同时,我们还为模型的运行时特性提供了另外两种数据类型:Models 和 Scripts。

Models 命令与运行的设备(CPU 或 GPU)和后端自定义的参数有关。RedisAI 内置了主流的机器学习框架,如 TensorFlow、Pytorch 等,并很快能够支持 ONNX Runtime 框架,同时增加了对传统机器学习模型的支持。然而,很棒的是,执行 Model 的命令对其后端是不感知的:

AI.MODELRUN model_key INPUTS input_key1 …  OUTPUTS output_key1 ..

这允许用户将后端选择(通常由数据专家来决定)和应用服务解耦合开来,置换模型只需要设置一个新的键值即可,非常简单。RedisAI 管理所有在模型处理队列中的请求,并在单独的线程中执行,这样保障了 Redis依然可以响应其它正常的请求。Scripts 命令可以在 CPU 或GPU 上执行,并允许用户使用 TorchScript 来操作Tensors 向量,TorchScript 是一个可操作 Tensors 向量的类 Python 自定义语言。这可以帮助用户在执行模型前对数据进行预处理,也可以用在对结果进行后处理的场景中,例如通过集成不同的模型来提高性能。

我们计划未来通过 DAG 命令支持批量执行命令,这会允许用户在一个原子性操作中批量执行多个 RedisAI 命令。例如在不同的设备上运行一个模型的不同实例,通过脚本对执行结果做平均预测。使用 DAG 命令,就可并行地进行计算,再执行聚合操作。如果需要全量且更深的特性列表,可以访问 redisai.io。新的架构可以简化为:

模型服务可以更简单

在生产环境中,使用 Jupyter notebooks 来编写代码并将其部署在Flask 应用并不是最优方案。用户如何确定自己的资源是最佳的呢?如果用户主机宕机之后,上述聊天机器人的中间状态会发生什么呢?用户可能会重复造轮子,实现已有的 Redis 功能来解决问题。另外,由于组合方案的复杂度往往超出预期,固执地坚持原有的解决方案也会非常有挑战性。RedisAI 通过 Redis 企业级的数据存储方案,支持深度学习所需要的 Tensors、Models 和 Scripts等数据类型,很好的实现了 Redis 和 AI 模型的深度整合。如果需要扩展模型的计算能力,只需要简单的对Redis 集群进行扩容即可,所以用户可以在生产环境中增加尽可能多的模型,从而降低基础设施成本和总体成本。最后,RedisAI 很好地适应了现有的 Redis 生态,允许用户执行脚本来预处理、后处理用户数据,可使用 RedisGear 对数据结构做正确的转换,可使用RedisGraph 来保持数据处于最新的状态。

结论和后续计划

1、短期内,我们希望使用RedisAI 在支持 3 种主流后端(Tensorflow、Pytorch 和 ONNX Runtime)的情况下,尽快稳定下来并达到稳定状态。
2、我们希望可以动态加载这些后端,用户可以自定义的加载指定的后端。例如,这将允许用户使用Tensorflow Lite 处理边缘用例。3、计划实现自动调度功能,可以实现在同一模型中实现不同队列的自动合并。4、RedisAI会统计模型的运行数据,用于衡量模型的执行情况。

5、完成上文中解释的DAG 特性。

让你的AI模型尽可能的靠近数据源的更多相关文章

  1. CANN5.0黑科技解密 | 别眨眼!缩小隧道,让你的AI模型“身轻如燕”!

    摘要:CANN作为释放昇腾硬件算力的关键平台,通过深耕先进的模型压缩技术,聚力打造AMCT模型压缩工具,在保证模型精度前提下,不遗余力地降低模型的存储空间和计算量. 随着深度学习的发展,推理模型巨大的 ...

  2. AI 音辨世界:艺术小白的我,靠这个AI模型,速识音乐流派选择音乐 ⛵

    作者:韩信子@ShowMeAI 数据分析实战系列:https://www.showmeai.tech/tutorials/40 机器学习实战系列:https://www.showmeai.tech/t ...

  3. Microsoft宣布为Power BI提供AI模型构建器,关键驱动程序分析和Azure机器学习集成

    微软的Power BI现在是一种正在大量结合人工智能(AI)的商业分析服务,它使用户无需编码经验或深厚的技术专长就能够创建报告,仪表板等.近日西雅图公司宣布推出几款新的AI功能,包括图像识别和文本分析 ...

  4. 炸金花游戏(3)--基于EV(期望收益)的简单AI模型

    前言: 炸金花这款游戏, 从技术的角度来说, 比德州差了很多. 所以他的AI模型也相对简单一些. 本文从EV(期望收益)的角度, 来尝试构建一个简单的炸金花AI. 相关文章: 德州扑克AI--Prog ...

  5. 最强云硬盘来了,让AI模型迭代从1周缩短到1天

    摘要:华为云擎天架构+ Flash-Native存储引擎+低时延CurreNET,数据存储和处理还有啥担心的? 虽然我们已经进入大数据时代,但多数企业数据利用率只有10%,数据的价值没有得到充分释放. ...

  6. 如何借助 JuiceFS 为 AI 模型训练提速 7 倍

    背景 海量且优质的数据集是一个好的 AI 模型的基石之一,如何存储.管理这些数据集,以及在模型训练时提升 I/O 效率一直都是 AI 平台工程师和算法科学家特别关注的事情.不论是单机训练还是分布式训练 ...

  7. AI模型运维——NVIDIA驱动、cuda、cudnn、nccl安装

    目前大部分使用GPU的AI模型,都使用的英伟达这套. 需要注意的是,驱动.cuda.cudnn版本需要一一对应,高低版本互不兼容. 驱动和cuda对应关系:https://docs.nvidia.co ...

  8. 二手车价格预测 | 构建AI模型并部署Web应用 ⛵

    作者:韩信子@ShowMeAI 数据分析实战系列:https://www.showmeai.tech/tutorials/40 机器学习实战系列:https://www.showmeai.tech/t ...

  9. 基于语法树和概率的AI模型

    语法树是句子结构的图形表示,它代表了句子的推导结果,有利于理解句子语法结构的层次.简单说,语法树就是按照某一规则进行推导时所形成的树. 有了语法树,我们就可以根据其规则自动生成语句,但是语法树本身是死 ...

随机推荐

  1. Python项目中的单元测试

    引入 单元测试负责对最小的软件设计单元(模块)进行验证,unittest是Python自带的单元测试框架. 单元测试与功能测试都是日常开发中必不可少的部分,本文演示了Python中unittest单元 ...

  2. 8.15 day33 进程池与线程池_协程_IO模型(了解)

    进程池和线程池 开进程开线程都需要消耗资源,只不过两者比较的情况线程消耗的资源比较少 在计算机能够承受范围之内最大限度的利用计算机 什么是池? ​ 在保证计算机硬件安全的情况下最大限度地利用计算机 ​ ...

  3. 解决!!-- krb5-libs.x86_64被卸载,yum不能使用,ssh不能连接

    常在河边走哪有不湿鞋,常玩服务器哪有不搞挂几台,一不小心就搞挂了 今天删除 krb5-libs.x86_64下了狠功夫..... 用了命令: rpm -e --nodeps  krb5-libs.x8 ...

  4. 扩展GroupBox控件

    1.GroupBox的边框颜色可以自行设置: 2.GroupBox可以设置边框的为圆角: 3.设置GroupBox标题在控件中的位置. 4.设置GroupBox标题的字体和颜色. 具体实现步骤Pane ...

  5. Linux 目录递归赋权,解决 Linux权限不够

    如你要操作一个目录下的文件时,系统提示 “权限不够”,可用以下方法解决. 如 test 文件目录. 1.用root账号登陆系统. 2.输入如下命令: chmod 777 test -R 这样访问.修改 ...

  6. 小白学Python(5)——python-pptx简单应用

    python-pptx允许您创建新的演示文稿以及对现有演示文稿进行更改. 实际上,它只允许您对现有演示文稿进行更改:只是,如果您从一个没有幻灯片的演示文稿开始,一开始感觉就像是从头开始创建一个幻灯片. ...

  7. strcpy/strncpy/strcpy_s比较

    转载自:http://blog.csdn.net/caomiao2006/article/details/4766416 strcpy()是依据源串的/0作为结束判断的,不检查copy先的Buffer ...

  8. oauth2.0授权详解

    学习oauth认证之前先回顾一下通过sessionid的会话过程 关于session与cookie的请戳:https://www.cnblogs.com/moran1992/p/10793748.ht ...

  9. Docker学习总结(二)--Docker安装与启动

    注:笔者使用的环境为 CentOS 7.6,如果版本不一致可能会出现一些错误. 安装 Docker 1)将 yum 包更新到最新版本 sudo yum update 2) 安装需要的软件包 sudo ...

  10. 使用VS Code 开发.NET CORE 程序指南

    1. 前言 近两年来,很多前端的同学都开始将 VSCode 作为前端主力开发工具,其丰富的扩展给程序开发尤其是前端开发带来了很多便利,但是作为微软主力语言的 .NET,却由于有宇宙第一编辑器 Visu ...