数据预处理是机器学习中最基础也最麻烦的一部分内容

在我们把精力扑倒各种算法的推导之前,最应该做的就是把数据预处理先搞定

在之后的每个算法实现和案例练手过程中,这一步都必不可少

同学们也不要嫌麻烦,动起手来吧

基础比较好的同学也可以温故知新,再练习一下哈

闲言少叙,下面我们六步完成数据预处理

其实我感觉这里少了一步:观察数据

![此处输入图片的描述][1]

这是十组国籍、年龄、收入、是否已购买的数据

有分类数据,有数值型数据,还有一些缺失值

看起来是一个分类预测问题

根据国籍、年龄、收入来预测是够会购买

OK,有了大体的认识,开始表演。

Step 1:导入库

import numpy as np

import pandas as pd

Step 2:导入数据集

dataset = pd.read_csv('Data.csv')

X = dataset.iloc[ : , :-1].values
Y = dataset.iloc[ : , 3].values
print("X")
print(X)
print("Y")
print(Y)

这一步的目的是将自变量和因变量拆成一个矩阵和一个向量。

结果如下

X
[['France' 44.0 72000.0]
['Spain' 27.0 48000.0]
['Germany' 30.0 54000.0]
['Spain' 38.0 61000.0]
['Germany' 40.0 nan]
['France' 35.0 58000.0]
['Spain' nan 52000.0]
['France' 48.0 79000.0]
['Germany' 50.0 83000.0]
['France' 37.0 67000.0]]
Y
['No' 'Yes' 'No' 'No' 'Yes' 'Yes' 'No' 'Yes' 'No' 'Yes']

Step 3:处理缺失数据

from sklearn.preprocessing import Imputer
imputer = Imputer(missing_values = "NaN", strategy = "mean", axis = 0)
imputer = imputer.fit(X[ : , 1:3])
X[ : , 1:3] = imputer.transform(X[ : , 1:3])

Imputer类具体用法移步

http://scikit-learn.org/stable/modules/preprocessing.html#preprocessing

本例中我们用的是均值替代法填充缺失值

运行结果如下

Step 3: Handling the missing data
step2
X
[['France' 44.0 72000.0]
['Spain' 27.0 48000.0]
['Germany' 30.0 54000.0]
['Spain' 38.0 61000.0]
['Germany' 40.0 63777.77777777778]
['France' 35.0 58000.0]
['Spain' 38.77777777777778 52000.0]
['France' 48.0 79000.0]
['Germany' 50.0 83000.0]
['France' 37.0 67000.0]]

Step 4:把分类数据转换为数字

from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X = LabelEncoder()
X[ : , 0] = labelencoder_X.fit_transform(X[ : , 0]) onehotencoder = OneHotEncoder(categorical_features = [0])
X = onehotencoder.fit_transform(X).toarray()
labelencoder_Y = LabelEncoder()
Y = labelencoder_Y.fit_transform(Y)
print("X")
print(X) print("Y")
print(Y)

LabelEncoder用法请移步

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html

X
[[1.00000000e+00 0.00000000e+00 0.00000000e+00 4.40000000e+01
7.20000000e+04]
[0.00000000e+00 0.00000000e+00 1.00000000e+00 2.70000000e+01
4.80000000e+04]
[0.00000000e+00 1.00000000e+00 0.00000000e+00 3.00000000e+01
5.40000000e+04]
[0.00000000e+00 0.00000000e+00 1.00000000e+00 3.80000000e+01
6.10000000e+04]
[0.00000000e+00 1.00000000e+00 0.00000000e+00 4.00000000e+01
6.37777778e+04]
[1.00000000e+00 0.00000000e+00 0.00000000e+00 3.50000000e+01
5.80000000e+04]
[0.00000000e+00 0.00000000e+00 1.00000000e+00 3.87777778e+01
5.20000000e+04]
[1.00000000e+00 0.00000000e+00 0.00000000e+00 4.80000000e+01
7.90000000e+04]
[0.00000000e+00 1.00000000e+00 0.00000000e+00 5.00000000e+01
8.30000000e+04]
[1.00000000e+00 0.00000000e+00 0.00000000e+00 3.70000000e+01
6.70000000e+04]]
Y
[0 1 0 0 1 1 0 1 0 1]

Step 5:将数据集分为训练集和测试集

from sklearn.cross_validation import train_test_split

X_train, X_test, Y_train, Y_test = train_test_split( X , Y , test_size = 0.2, random_state = 0)

X_train
[[0.00000000e+00 1.00000000e+00 0.00000000e+00 4.00000000e+01
6.37777778e+04]
[1.00000000e+00 0.00000000e+00 0.00000000e+00 3.70000000e+01
6.70000000e+04]
[0.00000000e+00 0.00000000e+00 1.00000000e+00 2.70000000e+01
4.80000000e+04]
[0.00000000e+00 0.00000000e+00 1.00000000e+00 3.87777778e+01
5.20000000e+04]
[1.00000000e+00 0.00000000e+00 0.00000000e+00 4.80000000e+01
7.90000000e+04]
[0.00000000e+00 0.00000000e+00 1.00000000e+00 3.80000000e+01
6.10000000e+04]
[1.00000000e+00 0.00000000e+00 0.00000000e+00 4.40000000e+01
7.20000000e+04]
[1.00000000e+00 0.00000000e+00 0.00000000e+00 3.50000000e+01
5.80000000e+04]]
X_test
[[0.0e+00 1.0e+00 0.0e+00 3.0e+01 5.4e+04]
[0.0e+00 1.0e+00 0.0e+00 5.0e+01 8.3e+04]]
step2
Y_train
[1 1 1 0 1 0 0 1]
Y_test
[0 0]

Step 6:特征缩放

from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)

大多数机器学习算法在计算中使用两个数据点之间的欧氏距离

特征在幅度、单位和范围上很大的变化,这引起了问题

高数值特征在距离计算中的权重大于低数值特征

通过特征标准化或Z分数归一化来完成

导入sklearn.preprocessing 库中的StandardScala

用法:http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

X_train
[[-1. 2.64575131 -0.77459667 0.26306757 0.12381479]
[ 1. -0.37796447 -0.77459667 -0.25350148 0.46175632]
[-1. -0.37796447 1.29099445 -1.97539832 -1.53093341]
[-1. -0.37796447 1.29099445 0.05261351 -1.11141978]
[ 1. -0.37796447 -0.77459667 1.64058505 1.7202972 ]
[-1. -0.37796447 1.29099445 -0.0813118 -0.16751412]
[ 1. -0.37796447 -0.77459667 0.95182631 0.98614835]
[ 1. -0.37796447 -0.77459667 -0.59788085 -0.48214934]]
X_test
[[-1. 2.64575131 -0.77459667 -1.45882927 -0.90166297]
[-1. 2.64575131 -0.77459667 1.98496442 2.13981082]]

100天搞定机器学习|Day1数据预处理的更多相关文章

  1. 100天搞定机器学习|Day35 深度学习之神经网络的结构

    100天搞定机器学习|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习 ...

  2. 100天搞定机器学习|Day11 实现KNN

    机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|D ...

  3. 100天搞定机器学习|Day8 逻辑回归的数学原理

    机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|D ...

  4. 100天搞定机器学习|Day9-12 支持向量机

    机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|D ...

  5. 100天搞定机器学习|Day16 通过内核技巧实现SVM

    前情回顾 机器学习100天|Day1数据预处理100天搞定机器学习|Day2简单线性回归分析100天搞定机器学习|Day3多元线性回归100天搞定机器学习|Day4-6 逻辑回归100天搞定机器学习| ...

  6. 100天搞定机器学习|Day17-18 神奇的逻辑回归

    前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...

  7. 100天搞定机器学习|Day19-20 加州理工学院公开课:机器学习与数据挖掘

    前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...

  8. 100天搞定机器学习|Day21 Beautiful Soup

    前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...

  9. 100天搞定机器学习|Day22 机器为什么能学习?

    前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...

随机推荐

  1. [Android] 环境优化配置Android Studio发展NDK

    ======================================================== 作者:qiujuer 博客:blog.csdn.net/qiujuer 站点:www. ...

  2. Nginx之Eclipse开发环境配置

    C开发的IDE很多,为什么使用Eclipse?原因: 1. 历史原因:使用eclipse时间长,比较熟悉. 2. 功能原因:使用eclipse查看源码,可以在各个函数与头文件间直接跳转.这是所谓号称& ...

  3. .Net 开源服务 and Net站点

    小泥鳅博客系统也是一个.NET平台的开源免费博客系统,创建于2008年夏天,基于.Net平台开发,拥有完整的文章发布,评论,订阅,标签等功能,满足个人/团队信息发布需求,可作为Blog,CMS,甚至建 ...

  4. ApplicationCommands用于表示应用程序程序员经常遇到的常见命令,类似于ctrl+c

    在WPF中,许多控件都自动集成了固有的命令集.比如文本框TextBox就提供了复制(Copy),粘贴(Paste),裁切(Cut),撤消(Undo)和重做(Redo)命令等. WPF提供常用应用程序所 ...

  5. 重写combobox模板,实现支持过滤的combobox

    先看效果图 客户提出需求后,首选在百度查找可靠方案 看了几个,效果都不理想, 大多是把isEditNable设置成true,IsTextSearchNable设置成false 再对itemsSourc ...

  6. 【shell】递归函数----调用自身的函数

    什么是递归函数? 一句话,调用自己的函数称为递归函数! #!/bin/bash declare -i count checkoutCount(){ read -p "Enter an cou ...

  7. Windows 上静态编译 Libevent 2.0.10 并实现一个简单 HTTP 服务器(无数截图)

    [文章作者:张宴 本文版本:v1.0 最后修改:2011.03.30 转载请注明原文链接:http://blog.s135.com/libevent_windows/] 本文介绍了如何在 Window ...

  8. 应用ImageJ对荧光图片进行半定量分析

    原文 应用ImageJ对荧光图片进行半定量分析 前言ImageJ是个好东西……(省略1000字)总地来说对我们的好处是:1.免费2.多功能,基本功能就很多,加上插件可以说得上是无限多(前提是你找得到, ...

  9. Win10《芒果TV - Preview》更新v3.1.31.0,全新播放页蜕变,预加载提速技术

    Win10<芒果TV - Preview>(商店内测版) v3.1.31.0 于2016年11月21日星期一晚上九点半登陆商店 主要是全面升级改造桌面播放页,新增观看互动评论.猜你喜欢功能 ...

  10. 发布Qt Quick桌面应用程序的方法(使得planets在XP上运行)

    发布Qt Quick桌面应用程序的方法 Qt是一款优秀的跨平台开发框架,它可以在桌面.移动平台以及嵌入式平台上运行.目前Qt 5介绍程序发布的文章帖子比较少.大家又非常想要知道如何发布Qt应用程序,于 ...