Background\text{Background}Background

The \text{The }The Listen&Say Test will be hold on May 11, so I decided to fill my blog \text{Test will be hold on May 11, so I decided to fill my blog }Test will be hold on May 11, so I decided to fill my blog 

with English words until that day.\text{with English words until that day.}with English words until that day.

Problem\text{Problem}Problem

There goes a problem.\text{There goes a problem.}There goes a problem.

You’ve got 2 intergers N,k. Please calculate the kth permutation of ∀k∈[i,n].\text{You've got 2 intergers }N,k\text{. Please calculate the }k\text{th permutation of }\forall k\in[i,n].You’ve got 2 intergers N,k. Please calculate the kth permutation of ∀k∈[i,n].

Solution\text{Solution}Solution

It’s easy to know that we can got it by Depth-first Search, \text{It's easy to know that we can got it by Depth-first Search, }It’s easy to know that we can got it by Depth-first Search, but its Time complexity is O(n!).\text{but its Time complexity is }O(n!).but its Time complexity is O(n!).

DeCantor Expansion is a algorithm which can solve problems like these calculating the kth permutation\text{is a algorithm which can solve problems like these calculating the }k\text{th permutation}is a algorithm which can solve problems like these calculating the kth permutationin O(nlog⁡n) with heap optimization.\text{in }O(n\log n)\text{ with heap optimization.}in O(nlogn) with heap optimization.



Let’s explain how it works in a simple example. Set N=5,k=61, the answer is a[].\text{Let's explain how it works in a simple example. Set }N=5,k=61,\text{ the answer is }a[].Let’s explain how it works in a simple example. Set N=5,k=61, the answer is a[].

1.Let 61 / 4! = 2 ... 13, it shows that there’re 2 numbers behind a[1] are smaller than a[1].\text{1.\quad Let 61 / 4! = 2 ... 13, it shows that there're 2 numbers behind }a[1]\text{ are smaller than a[1].}1.Let 61 / 4! = 2 ... 13, it shows that there’re 2 numbers behind a[1] are smaller than a[1].

Therefore, a[1]=3;\text{Therefore, }a[1]=3;Therefore, a[1]=3;

2.Let 13 / 3! = 2 ... 1, it shows that there’re 2 numbers behind a[2] are smaller than a[2].\text{2.\quad Let 13 / 3! = 2 ... 1, it shows that there're 2 numbers behind }a[2]\text{ are smaller than a[2].}2.Let 13 / 3! = 2 ... 1, it shows that there’re 2 numbers behind a[2] are smaller than a[2].

Therefore, a[2]=4;\text{Therefore, }a[2]=4;Therefore, a[2]=4;

3.Let 1 / 2! = 0 ... 1, it shows that there’re 0 number behind a[3] are smaller than a[3].\text{3.\quad Let 1 / 2! = 0 ... 1, it shows that there're 0 number behind }a[3]\text{ are smaller than a[3].}3.Let 1 / 2! = 0 ... 1, it shows that there’re 0 number behind a[3] are smaller than a[3].

Therefore, a[3]=1;\text{Therefore, }a[3]=1;Therefore, a[3]=1;

4.Let 1 / 1! = 1 ... 0, it shows that there’re 1 number behind a[4] are smaller than a[4].\text{4.\quad Let 1 / 1! = 1 ... 0, it shows that there're 1 number behind }a[4]\text{ are smaller than a[4].}4.Let 1 / 1! = 1 ... 0, it shows that there’re 1 number behind a[4] are smaller than a[4].

Therefore, a[4]=5;\text{Therefore, }a[4]=5;Therefore, a[4]=5;



Therefore, a[5]=2,a[]={3,4,1,5,2}.\text{Therefore, }a[5]=2, a[]=\{3,4,1,5,2\}.Therefore, a[5]=2,a[]={3,4,1,5,2}.

Summary\text{Summary}Summary

∀i∈[1,n−1], let k / (n−1)!, the answer you’ve got is the number of interger j∈[i+1,n] which has a[j]&lt;a[i]. And let k equals to the remainder.\forall i\in[1,n-1],\text{ let }k\ /\ (n-1)!\text{, the answer you've got is the number of interger }\newline j\in[i+1,n]\text{ which has }a[j]&lt;a[i].\text{ And let }k\text{ equals to the remainder.}∀i∈[1,n−1], let k / (n−1)!, the answer you’ve got is the number of interger j∈[i+1,n] which has a[j]<a[i]. And let k equals to the remainder.

The End\text{The End}The End

Reference material\text{Reference material}Reference material

DeCantor Expansion (逆康托展开)的更多相关文章

  1. LightOJ1060 nth Permutation(不重复全排列+逆康托展开)

    一年多前遇到差不多的题目http://acm.fafu.edu.cn/problem.php?id=1427. 一开始我还用搜索..后来那时意外找到一个不重复全排列的计算公式:M!/(N1!*N2!* ...

  2. nyoj 139——我排第几个|| nyoj 143——第几是谁? 康托展开与逆康托展开

    讲解康托展开与逆康托展开.http://wenku.baidu.com/view/55ebccee4afe04a1b071deaf.html #include<bits/stdc++.h> ...

  3. 题解报告:NYOJ 题目143 第几是谁?(逆康托展开)

    描述 现在有"abcdefghijkl”12个字符,将其按字典序排列,如果给出任意一种排列,我们能说出这个排列在所有的排列中是第几小的.但是现在我们给出它是第几小,需要你求出它所代表的序列. ...

  4. HDU1027 Ignatius and the Princess II( 逆康托展开 )

    链接:传送门 题意:给出一个 n ,求 1 - n 全排列的第 m 个排列情况 思路:经典逆康托展开,需要注意的时要在原来逆康托展开的模板上改动一些地方. 分析:已知 1 <= M <= ...

  5. 康托展开&逆康托展开学习笔记

    啊...好久没写了...可能是最后一篇学习笔记了吧 题目大意:给定序列求其在全排列中的排名&&给定排名求排列. 这就是康托展开&&逆康托展开要干的事了.下面依次介绍 一 ...

  6. Codeforces-121C(逆康托展开)

    题目大意: 给你两个数n,k求n的全排列的第k小,有多少满足如下条件的数: 首先定义一个幸运数字:只由4和7构成 对于排列p[i]满足i和p[i]都是幸运数字 思路: 对于n,k<=1e9 一眼 ...

  7. hdoj 1027 Ignatius and the Princess II 【逆康托展开】

    Ignatius and the Princess II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ( ...

  8. 康托展开与逆康托展开模板(O(n^2)/O(nlogn))

    O(n2)方法: namespace Cantor { ; int fac[N]; void init() { fac[]=; ; i<N; ++i)fac[i]=fac[i-]*i; } in ...

  9. 【HDU - 1043】Eight(反向bfs+康托展开)

    Eight Descriptions: 简单介绍一下八数码问题:在一个3×3的九宫格上,填有1~8八个数字,空余一个位置,例如下图: 1 2 3 4 5 6 7 8   在上图中,由于右下角位置是空的 ...

随机推荐

  1. Python集训营45天—Day04 (函数)

    目录 1. 函数介绍 2. 函数的参数 3. 模块与函数 4. 递归函数 5. 匿名函数 6. 多返回值 python 的学习已经进入到第四天,前面几章我们已经学会了基本的变量操作,以及分支结构和循环 ...

  2. django配置静态文件的两种方法

    方法一:按照django配置静态文件的方法,可以在APP应用目录下创建一个static的文件夹,然后在static文件夹下创建一个和APP同名的文件夹,如我有一个blog的django项目,在下面有一 ...

  3. Python虚拟环境管理工具virtualenvwrapper安装及配置

      1. 安装virtualenv 使用pip install virtualenv安装virtualenv虚拟环境工具 2. 安装virtualenvwrapper a) Linux环境,直接使用p ...

  4. [Advanced Python] 10 - Transfer parameters

    动态库调用 一.Python调用 .so From: Python调用Linux下的动态库(.so) (1) 生成.so:.c to .so lolo@-id:workme$ gcc -Wall -g ...

  5. [Leetcode] 第337题 打家劫舍III

    一.题目描述 在上次打劫完一条街道之后和一圈房屋后,小偷又发现了一个新的可行窃的地区.这个地区只有一个入口,我们称之为“根”. 除了“根”之外,每栋房子有且只有一个“父“房子与之相连.一番侦察之后,聪 ...

  6. 前台提交数据到node服务器(get方式)

    .有两种办法,一种是表单提交,一种是ajax方式提交. 1.form提交  在前台模板文件上写: <form action="/reg" method="get&q ...

  7. node学习之路

    现阶段开始学习使用node开发一个个人博客系统,nodejs 基于V8引擎,是一个让 JavaScript 运行在服务端的开发平台,功能强大 ,Node.js 可以作为服务器向用户提供服务,它跳过了 ...

  8. kafka报错:Invalid message size: 0

    现象 1.kafka topic 部分分区积压 2.问题kafka 节点上一直报错:java.lang.IllegalStateException: Invalid message size: 0 [ ...

  9. javaweb中文中乱码分析与解决

    要想解决乱码的问题, 最好的办法是先弄清楚javaweb中数据传送的原理. 本文件将简单的讲解客户端的请求和服务器响应中编码的转换过程, 以及如何解决乱码的 问题. request(req):  se ...

  10. Linux 常用解压和压缩命令

    .tar 解包 tar xvf filename.tar.tar 打包 tar cvf filename.tar dirname.gz 解压1 gunzip filename.gz.gz 解压2 gz ...