POJ 1949 Chores
Farmer John has a list of N (3 <= N <= 10,000) chores that must be completed. Each chore requires an integer time (1 <= length of time <= 100) to complete and there may be other chores that must be completed before this chore is started. We will call these prerequisite chores. At least one chore has no prerequisite: the very first one, number 1. Farmer John's list of chores is nicely ordered, and chore K (K > 1) can have only chores 1,.K-1 as prerequisites. Write a program that reads a list of chores from 1 to N with associated times and all perquisite chores. Now calculate the shortest time it will take to complete all N chores. Of course, chores that do not depend on each other can be performed simultaneously.
Input
* Lines 2..N+1: N lines, each with several space-separated integers. Line 2 contains chore 1; line 3 contains chore 2, and so on. Each line contains the length of time to complete the chore, the number of the prerequisites, Pi, (0 <= Pi <= 100), and the Pi prerequisites (range 1..N, of course).
Output
Sample Input
7
5 0
1 1 1
3 1 2
6 1 1
1 2 2 4
8 2 2 4
4 3 3 5 6
Sample Output
23
Hint
[Here is one task schedule:
Chore 1 starts at time 0, ends at time 5.
Chore 2 starts at time 5, ends at time 6.
Chore 3 starts at time 6, ends at time 9.
Chore 4 starts at time 5, ends at time 11.
Chore 5 starts at time 11, ends at time 12.
Chore 6 starts at time 11, ends at time 19.
Chore 7 starts at time 19, ends at time 23.
]
题解:树形DP入门题。从根节点往下依次更新出每一个节点的最短时间,则该最短时间的最大值即为:完成家务的最短时间。
参考代码为:
#include <iostream>
#include <cstring>
using namespace std;
const int maxn=10005;
int c[maxn],n[maxn],dp[maxn]; int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
int N,temp,sum=-maxn;
memset(dp,0,sizeof dp);
cin>>N;
for(int i=1;i<=N;i++)
{
cin>>c[i]>>n[i];
if(i==1) dp[i]=c[i];
else
{
int max=-maxn;
if(n[i]==0) dp[i]=c[i];
else
{
for(int j=0;j<n[i];j++)
{
cin>>temp;
if(dp[temp]>max) max=dp[temp];
}
dp[i]=max+c[i];
}
}
if(dp[i]>sum) sum=dp[i];
}
cout<<sum<<endl;
return 0;
} /*
7
5 0
1 1 1
3 1 2
6 1 1
1 2 2 4
8 2 2 4
4 3 3 5 6
*/
POJ 1949 Chores的更多相关文章
- POJ 1949 Chores (很难想到的dp)
传送门: http://poj.org/problem?id=1949 Chores Time Limit: 3000MS Memory Limit: 30000K Total Submissio ...
- poj 1949 Chores 最长路
题目链接 求出最长路..... #include <iostream> #include <vector> #include <cstdio> #include & ...
- POJ 1949 Chores(DAG上的最长路 , DP)
题意: 给定n项任务, 每项任务的完成用时t和完成每项任务前需要的k项任务, 求把所有任务完成的最短时间,有当前时间多项任务都可完成, 那么可以同时进行. 分析: 这题关键就是每项任务都会有先决条件, ...
- POJ 1949 DP?
题意: 有n个家务,第i个家务需要一定时间来完成,并且第i个任务必须在它 "前面的" 某些任务完成之后才能开始. 给你任务信息,问你最短需要多少时间来完成任务. 输入: 第一行n个 ...
- poj 动态规划题目列表及总结
此文转载别人,希望自己能够做完这些题目! 1.POJ动态规划题目列表 容易:1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 11 ...
- poj动态规划列表
[1]POJ 动态规划题目列表 容易: 1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1208, 1276, 13 ...
- 【转载】图论 500题——主要为hdu/poj/zoj
转自——http://blog.csdn.net/qwe20060514/article/details/8112550 =============================以下是最小生成树+并 ...
- POJ 动态规划题目列表
]POJ 动态规划题目列表 容易: 1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1208, 1276, 1322 ...
- poj 动态规划的主题列表和总结
此文转载别人,希望自己可以做完这些题目. 1.POJ动态规划题目列表 easy:1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, ...
随机推荐
- c#属性1(Property)
创建一个只读属性 using System; using System.Collections; using System.Collections.Generic; using System.Glob ...
- Non-local Neural Networks 原理详解及自注意力机制思考
Paper:https://arxiv.org/abs/1711.07971v1 Author:Xiaolong Wang, Ross Girshick, Abhinav Gupta, Kaiming ...
- 在linux (centos)上使用puppeteer实现网页截图
1.安装nodejs和npm # 下载解压 wget -c https://nodejs.org/dist/v8.9.1/node-v8.9.1-linux-x64.tar.xz tar -xvf n ...
- nyoj 311-完全背包 (动态规划, 完全背包)
311-完全背包 内存限制:64MB 时间限制:4000ms Special Judge: No accepted:5 submit:7 题目描述: 直接说题意,完全背包定义有N种物品和一个容量为V的 ...
- 《JAVA 程序员面试宝典(第四版)》之JAVA程序设计基础概念(1)类型转换
问题主题:类型转换 书页号码:37页 题目: 讨论点:答案不是D,应该是B 理由:看下面在编译器输入的结果 知识扩展:装箱与拆箱, == 与 equals 区别 之前也老是听说什么装箱.拆箱之 ...
- Install zabbix
- name: Create dir to keep install file file: path=/opt/pacheage state=directory follow=yes force=ye ...
- SpringMvc demo示例及源码详细分析
三层架构介绍 我们的开发架构一般都是基于两种形式,一种C/S架构,也就是客户端/服务器,另一种是B/S架构,也就是浏览器/服务器.在JavaEE开发中,几乎全部都是基于B/S架构的开发.那么在B/S架 ...
- 正则表达式 第六篇:调用CLR函数执行正则查询
在SQL Server数据库中可以执行模糊查询,像like子句,和全文查询(Fulltext search),但是无法直接执行正则查找,SQL Server没有执行正则表达式的内置函数,但是我们可以创 ...
- python3 之 内置函数Zip
python3 内置函数zip 一.简介: 该函数用于将多个可迭代对象作为参数,依次将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的对象.二.实例1: name = ['张三','李四', ...
- 2019-11-27:kali 2019-4中文乱码解决方法
1.更换阿里源 vim /etc/apt/soul,编辑源之后,apt-get updata && apt-get upgrade && apt-get clean , ...