package com.bd.useranalysis.spark.streaming.kafka2es;

import com.alibaba.fastjson.JSON;
import com.bd.useranalysis.common.config.ConfigUtil;
import com.bd.useranalysis.common.project.datatype.DataTypeProperties;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka010.*; import java.util.*; public class Kafka2EsJava { Properties properties = ConfigUtil.getInstance().getProperties("kafka/kafka-server-config.properties"); static Set<String> dataTypes = DataTypeProperties.dataTypeMap.keySet(); public static void main(String[] args) throws InterruptedException { SparkConf sparkConf = new SparkConf().setAppName("sparkstreaming_kafka2es").setMaster("local[2]");
JavaSparkContext jsc = new JavaSparkContext(sparkConf);
jsc.setLogLevel("WARN");
JavaStreamingContext jss = new JavaStreamingContext(jsc, Durations.seconds(2L)); Map<String, Object> kafkaParams = new HashMap<>();
kafkaParams.put("bootstrap.servers","quyf:9092");
kafkaParams.put("key.deserializer", StringDeserializer.class);
kafkaParams.put("value.deserializer", StringDeserializer.class);
kafkaParams.put("group.id", "test_20190815");
kafkaParams.put("auto.offset.reset", "latest");
kafkaParams.put("enable.auto.commit", true);
List<String> topicList = Arrays.asList("test","test2");
JavaInputDStream<ConsumerRecord<String, String>> stream = KafkaUtils.createDirectStream(jss,
LocationStrategies.PreferConsistent(),
ConsumerStrategies.Subscribe(topicList, kafkaParams)
); JavaDStream<HashMap<String, String>> recordDS = stream.map(new Function<ConsumerRecord<String, String>, HashMap<String, String>>() { @Override
public HashMap<String, String> call(ConsumerRecord<String, String> record) throws Exception {
//System.out.println("consumer==>"+record.value());
return JSON.parseObject(record.value(), HashMap.class);
}
}); for (String type : dataTypes) {
recordDS.filter(new Function<HashMap<String, String>, Boolean>() {
@Override
public Boolean call(HashMap<String, String> resultMap) throws Exception {
return resultMap.get("table").equals(type);
}
}).foreachRDD(new VoidFunction<JavaRDD<HashMap<String, String>>>() {
@Override
public void call(JavaRDD<HashMap<String, String>> mapJavaRDD) throws Exception {
mapJavaRDD.foreach(new VoidFunction<HashMap<String, String>>() {
@Override
public void call(HashMap<String, String> stringStringHashMap) throws Exception {
System.out.println(stringStringHashMap.toString());
}
});
}
});
} jss.start();
jss.awaitTermination(); }
}

  

public class GenKafkaData {

    public static void main(String[] args) throws Exception {
List<String> lines = IOUtils.readLines(new FileReader(
new File("E:\\wechat\\wechat_source1_1111153.txt"))); Producer<String, String> producer = getProducer(); ArrayList<String> columns = DataTypeProperties.dataTypeMap.get("wechat");
Map<String, String> dataMap = new HashMap<>();
dataMap.put("table","wechat");
for(String line : lines){
String[] fields = line.split("\t");
for (int i = 0; i < fields.length; i++) {
dataMap.put(columns.get(i), fields[i]);
}
int index = 0;
while(true){
String lineRecord = JSON.toJSONString(dataMap);
producer.send(new ProducerRecord<>("test2",null, lineRecord));
Thread.sleep(1000);
index++;
System.out.println("send->"+lineRecord);
if(index==10){
break;
}
}
//System.out.println("send->"+lineRecord);
//StringProducer.producer("test", lineRecord);
}
} public static Producer<String, String> getProducer(){
Producer<String, String> producer = new KafkaProducer<String, String>(createProducerProperties());
return producer;
} private static Properties createProducerProperties() {
Properties props = new Properties();
// props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
// props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("key.serializer", StringSerializer.class);
props.put("value.serializer", StringSerializer.class);
props.put("bootstrap.servers", "quyf:9092");
props.put("linger.ms",1);
props.put("acks", "all");
// 消息发送最大尝试次数
props.put("retries", 0);
// 一批消息处理大小
props.put("batch.size", 16384);
// 增加服务端请求延时
props.put("linger.ms", 1);
// 发送缓存区内存大小
props.put("buffer.memory", 33554432);
return props;
}
}

  

kafka生产消息,streaming消费的更多相关文章

  1. kafka生产消息的速度跟什么有关?

    kafka的吞吐量很大,在保证带宽的情况下,网上的一些测试表明3台broker,没有replication,6个partition的情况下,一般的写入速度可以达到300MB/s.参考:kakfa测试 ...

  2. kafka生产者与消费者的生产消息与消费消息所遇到的问题

    当我们用API写kafka的时候 生产者生产消息,但是消费者接收不到消息?集群上启动消费者显示生产的消息.我们需要修改一下配置 (1)我们打开在虚拟机中修改kafka集群的配置文件 [root@spa ...

  3. kafka 保证消息被消费和消息只消费一次

    1. 保证消息被消费 即使消息发送到了消息队列,消息也不会万无一失,还是会面临丢失的风险. 我们以 Kafka 为例,消息在Kafka 中是存储在本地磁盘上的, 为了减少消息存储对磁盘的随机 I/O, ...

  4. 用canal同步binlog到kafka,spark streaming消费kafka topic乱码问题

    canal 1.1.1版本之后, 默认支持将canal server接收到的binlog数据直接投递到MQ, 目前默认支持的MQ系统有kafka和RocketMQ. 在投递的时候我们使用的是非压平的消 ...

  5. spark streaming - kafka updateStateByKey 统计用户消费金额

    场景 餐厅老板想要统计每个用户来他的店里总共消费了多少金额,我们可以使用updateStateByKey来实现 从kafka接收用户消费json数据,统计每分钟用户的消费情况,并且统计所有时间所有用户 ...

  6. kafka生产消费原理笔记

    一.什么是kafka Kafka是最初由Linkedin公司开发,是一个分布式.支持分区的(partition).多副本的(replica),基于zookeeper协调的分布式消息系统,它的最大的特性 ...

  7. Spark Streaming消费Kafka Direct方式数据零丢失实现

    使用场景 Spark Streaming实时消费kafka数据的时候,程序停止或者Kafka节点挂掉会导致数据丢失,Spark Streaming也没有设置CheckPoint(据说比较鸡肋,虽然可以 ...

  8. Python 基于Python结合pykafka实现kafka生产及消费速率&主题分区偏移实时监控

    基于Python结合pykafka实现kafka生产及消费速率&主题分区偏移实时监控   By: 授客 QQ:1033553122   1.测试环境 python 3.4 zookeeper- ...

  9. Spark streaming消费Kafka的正确姿势

    前言 在游戏项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不 ...

随机推荐

  1. HTML 颜色输入框修改事件的触发,以及获取修改后的颜色

    HTML 颜色输入框修改事件的触发,以及获取修改后的颜色 <!DOCTYPE html> <html lang="en"> <head> < ...

  2. Vue2.x与bootsrap-table动态添加元素和绑定事件无效

    一.问题:     最近在使用vue与bootstrap-table结合生成表格时,按以前的经验----每列数据可用formatter:function(value,row,index){}进行一些其 ...

  3. ZeroC ICE的远程调用框架 class与interface

    我们在ice文件中定义的class或interface,slice都会为我们生成stub存根类和skeleton骨架类.在这里要注意slice并没有分别生成两份单独用在客户端或服务端的接口给开发分发. ...

  4. JVM集训-----内存结构

    一.程序计数器/PC寄存器 (Program Counter Registe) 用于保存当前正在执行的程序的内存地址(下一条jvm指令的执行地址),由于Java是支持多线程执行的,所以程序执行的轨迹不 ...

  5. 树莓派4B安装netcore

    准备材料 SDFormatter.exe ---格式化SD卡,空的SD就可以不用了 2019-09-26-raspbian-buster.img ---下载好树莓派系统镜像 win32diskimag ...

  6. 【Luogu P1502】窗口的星星

    Luogu P1502 题意很好理解,就是问给出的矩形套住的最大和. 但是做起来却十分麻烦. --来自疯狂爆10分的愤怒 一个比较高效的思路是--把每一个星星作为左下角向右上方拓展形成一个矩形, 拓展 ...

  7. ArrayList实现原理(JDK1.8)

    ArrayList实现原理(JDK1.8) public class ArrayList<E> extends AbstractList<E> implements List& ...

  8. 前端开发单位em

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  9. Mybatis整合spring(适合小白)

    目录 1.整合思路 2.整合需要的jar包 3.整合的步骤 4.Dao的开发的两种实现方式 6.Dao的开发的实现方式总结图 @ Mybatis整合spring其实就是SSM框架中SM的整合集成. 1 ...

  10. logistic回归介绍以及原理分析

    1.什么是logistic回归? logistic回归虽然说是回归,但确是为了解决分类问题,是二分类任务的首选方法,简单来说,输出结果不是0就是1 举个简单的例子: 癌症检测:这种算法输入病理图片并且 ...