《统计学习方法》极简笔记P2:感知机数学推导
感知机模型
输入空间是$\chi\subseteq\mathbb{R}^n$,输出空间是$y={+1,-1}$
感知机定义为:$f(x)=sign(wx+b)$
感知机学习策略
输入空间任一点$x_0$到超平面S的距离:
$\frac{1}{||w||}|wx_0+b|$
误分类数据$(x_i,y_i)$,有$-y_i(wx_i+b)>0$
误分类点$x_i$到超平面S的距离$-\frac{1}{||w||}y_i(wx_i+b)$
误分类点集合M,所有误分类点到超平面S的距离
$-\frac{1}{||w||}\sum_{x_i\in{M}}y_i(wx_i+b)$
由此,感知机损失函数定义为
$L(w,b)=-\sum_{x_i\in{M}}y_i(wx_i+b)$
感知机学习算法(原始形式)
输入:训练数据集
$T={(x_1,y_1),(x_2,y_2),(x_N,y_N)...,(x_1,y_1)}$
$x_i\in\chi\subseteq\mathbb{R}^n$,$y_i\in{y}={+1,-1}$,学习率$\eta$
输出:w,b;感知机模型$f(x)=sign(wx+b)$
(1)选取初值$w_0$,$b_0$
(2)训练集选取$(x_i,y_i)$
(3)IF $y_i(wx_i+b)≤0$
$w←w+\eta{y_ix_i}$
$b←b+\eta{y_i}$
(4)转至(2),直到没有误分类点。
另:感知机算法是收敛的,在训练数据及上的误分类次数k满足
$k≤(\frac{R}{\gamma})^2$
感知机学习算法(对偶形式)
由原始形式
$w←w+\eta{y_ix_i}$
$b←b+\eta{y_i}$
进行n次,w,b关于$(x_i,y_i)$增量分别为$a_iy_ix_i$和$a_iy_i$
记$a_i=n_i\eta$,最后学习到的w,b表示为
$w=\sum_{i=1}^{N}a_iy_ix_i$
$b=\sum_{i=1}^{N}a_iy_i$
输入:训练数据集
$T={(x_1,y_1),(x_2,y_2),(x_N,y_N)...,(x_1,y_1)}$
$x_i\in\chi\subseteq\mathbb{R}^n$,$y_i\in{y}={+1,-1}$,学习率$\eta$
输出:a,b;感知机模型$f(x)=sign(\sum_{j=1}^{N}a_jy_jx_j·x+b)$
其中$a=(a_1,a_2,...,a_N)^T$
(1)$a←0$;$b←0$
(2)训练集选取$(x_i,y_i)$
(3)IF $y_i(\sum_{j=1}^{N}a_jy_jx_j·x_i+b)≤0$
$a_i←a_i+\eta$
$b←b+\eta{y_i}$
(4)转至(2),直到没有误分类点。
记Gram矩阵$G=[x_i·x_j]_{N×N}$
《统计学习方法》极简笔记P2:感知机数学推导的更多相关文章
- 《统计学习方法》极简笔记P5:决策树公式推导
<统计学习方法>极简笔记P2:感知机数学推导 <统计学习方法>极简笔记P3:k-NN数学推导 <统计学习方法>极简笔记P4:朴素贝叶斯公式推导
- 《统计学习方法》极简笔记P4:朴素贝叶斯公式推导
<统计学习方法>极简笔记P4:朴素贝叶斯公式推导 朴素贝叶斯基本方法 通过训练数据集 T={(x_1,y_1),(x_2,y_2),(x_N,y_N)...,(x_1,y_1)} 学习联合 ...
- 统计学习方法笔记 -- KNN
K近邻法(K-nearest neighbor,k-NN),这里只讨论基于knn的分类问题,1968年由Cover和Hart提出,属于判别模型 K近邻法不具有显式的学习过程,算法比较简单,每次分类都是 ...
- 统计学习方法 --- 感知机模型原理及c++实现
参考博客 Liam Q博客 和李航的<统计学习方法> 感知机学习旨在求出将训练数据集进行线性划分的分类超平面,为此,导入了基于误分类的损失函数,然后利用梯度下降法对损失函数进行极小化,从而 ...
- 我的第一个 Rails 站点:极简优雅的笔记工具-Raysnote
出于公司开发需求,这个暑假我開始搞Ruby on Rails.在业余时间捣鼓了一个在线笔记应用:http://raysnote.com.这是一个极简而优雅的笔记站点(至少我个人这么觉得的). 笔记支持 ...
- 《统计学习方法》笔记九 EM算法及其推广
本系列笔记内容参考来源为李航<统计学习方法> EM算法是一种迭代算法,用于含有隐变量的概率模型参数的极大似然估计或极大后验概率估计.迭代由 (1)E步:求期望 (2)M步:求极大 组成,称 ...
- 《统计学习方法》笔记三 k近邻法
本系列笔记内容参考来源为李航<统计学习方法> k近邻是一种基本分类与回归方法,书中只讨论分类情况.输入为实例的特征向量,输出为实例的类别.k值的选择.距离度量及分类决策规则是k近邻法的三个 ...
- 统计学习方法与Python实现(一)——感知机
统计学习方法与Python实现(一)——感知机 iwehdio的博客园:https://www.cnblogs.com/iwehdio/ 1.定义 假设输入的实例的特征空间为x属于Rn的n维特征向量, ...
- 统计学习方法笔记--EM算法--三硬币例子补充
本文,意在说明<统计学习方法>第九章EM算法的三硬币例子,公式(9.5-9.6如何而来) 下面是(公式9.5-9.8)的说明, 本人水平有限,怀着分享学习的态度发表此文,欢迎大家批评,交流 ...
随机推荐
- EnjoyingSoft之Mule ESB开发教程第二篇:Mule ESB基本概念
目录 1. 使用Anypoint Studio开发 2. Mule ESB Application Structure - Mule ESB应用程序结构 3. Mule ESB Application ...
- ZIP:GZIP
GZIPInputStream: GZIPInputStream(InputStream in) :使用默认缓冲区大小创建新的输入流. GZIPInputStream(InputStream in, ...
- linux weblogic12.1.3.0卸载过程
主要是一开始以为跟之前版本一样有uninstall.sh,但却找不到. 最后google 才发现改了个名字,deinstall.sh 可能后面的版本都是这个脚本了吧. 先进入脚本目录,命令:cd /h ...
- NOIp2018 TG day1 T2暨洛谷P5020 货币系统:题解
题目链接:https://www.luogu.org/problemnew/show/P5020 这道题感觉比较水啊,身为普及组蒟蒻都不费力的做出来了,而且数据范围应该还能大一些,n起码几万几十万都不 ...
- CUDA编程学习笔记2
第二章 cuda代码写在.cu/.cuh里面 cuda 7.0 / 9.0开始,NVCC就支持c++11 / 14里面绝大部分的语言特性了. Dim3 __host__ __device__ dim3 ...
- C#3.0新增功能10 表达式树 02 说明
连载目录 [已更新最新开发文章,点击查看详细] 表达式树是定义代码的数据结构. 它们基于编译器用于分析代码和生成已编译输出的相同结构.表达式树和 Roslyn API 中用于生成分析器和 Cod ...
- spring解析配置文件(三)
一.从XmlBeanDefinitionReader的registerBeanDefinitions(doc,resource)开始 protected int doLoadBeanDefinitio ...
- python3键盘输入
1.脚本 # -*- coding: utf-8 -*- print("今年是哪一年?"),year = input("年份:")print ("ji ...
- C# 委托(delegate)、泛型委托和Lambda表达式
目录 # 什么是委托 # 委托声明.实例化和调用 1.声明 2.委托的实例化 3.委托实例的调用 4.委托完整的简单示例 #泛型委托 1.Func委托 2.Action委托 3.Predicate委托 ...
- 在ABP中灵活使用AutoMapper
demo地址:ABP.WindowsService 该文章是系列文章 基于.NetCore和ABP框架如何让Windows服务执行Quartz定时作业 的其中一篇. AutoMapper简介 Auto ...