用流收集数据

汇总
long howManyDishes = menu.stream().collect(Collectors.counting());

int totalCalories = menu.stream().collect(summingInt(Dish::getCalories));
//求平均值
double avgCalories = menu.stream().collect(averagingInt(Dish::getCalories));
//summarizing操作可以得到总和.平均值.最大值.最小值
IntSummaryStatistics menuStatistics = menu.stream().collect(summarizingInt(Dish::getCalories));
//打印可得
IntSummaryStatistics{count= 9,sum=4300,min=120,average=477.777,max = 800};
查找最大值和最小值
Comparator<Dish> dishCaloriesComparator = Comparator.comparingInt(Dish::getCalories);
Optional<Dish> mostCalorieDish = menu.stream().collect(maxBy(dishCaloriesComparator));
连接字符串
//joining在内部使用了StringBuilder来把生成的字符串逐个追加起来
String shortMenu = menu.stream().map(Dish::getName).collect(joning());
//用逗号分隔
String shortMenu2 = menu.stream().map(Dish::getName).collect(joning(","));
广义的归约汇总
int totalCalories = menu.stream().collect(reducing(0,Dish::getCalories,(i,j)->j+i));

reducing需要说那个参数:

1.起始值

2.被操作的值

3.是一个BinaryOperator,将两个项目累计成一个同类型的值

同理,可以求最高热量的菜

Optional<Dish> mostCalorieDish = menu.stream().collect(reducing(d1,d2)->d1.getCalories()>d2.getCalories()?d1:d2));
分组
Map<Dish.Type,List<Dish> dishesByType = menu.stream().collect(groupingBy(Dish::getType));

复杂的分组

public enum CaloricLevel{DIET,NORMAL,FAT}

Map<CaloricLevel,List<Dish>> dishesByCaloricLevel = menu.stream().collect(
groupingBy(dish ->{
if(dish.getCalories()<=400) return CaloricLevel.DIET;
else if(dish.getCalories() <= 700) return CaloricLevel.NORMAL:
else return CaloricLevel.FAT;
})
);
按子组收集数据
Map<Dish.Type,Long> typesCount = menu.stream().collect(
groupingBy(Dish::getType,counting()));

1.查找每个子组中热量最高的Dish

Map<Dish.Type,Dish> mostCaloricByType = menu.stream().collect(groupingBy(Dish::getType,collectingAndThen(
maxBy(comparingInt(Dish::getCalories)),Optional::get)));

2.对每组进行求和

Map<Dish.Type,Integer> totalCaloriesByType = menu.stream().collect(groupingBy(Dish::getType,summingInt(Dish::getCalories)));

3.groupingBy和mapping收集器结合起来

Map<Dish.Type,Set<CaloricLevel>> caloricLevelsByType = menu.stream().collect(
groupingBy(Dish::getType,mapping(
dish -> {
if(dish.getCalories()<=400) return CaloricLevel.DIET;
else if (dish.getCalories <= 700) return CaloricLevel.NORMAL;
else return CaloricLevel.FAT,toSet()
}
))
);

分区:

Map<Boolean , List<Dish>> partitionedMenu = menu.stream().collect(partitioningBy(Dish::isVegetarian));

partitioningBy工厂方法有一个重载版本,可以传递第二收集器

Map<Boolean,Map<Dish.Type,List<Dish>>> vegetarianDishesByType = menu.stream().collect(
partitioningBy(Dish::isVegetarian,groupingBy(Dish::getType)));

还可以重用前面的代码来找到素食和非素食中热量最高的菜:

Map<Boolean, Dish> mostVegetarian = menu.stream().collect(
menu.stream().collect(
partitioningBy(Dish::isVegetarian,
collectingAndThe(
maxBy(comparingInt(Dish::getCalories)),
Optional::get))));
将数字按质数和非质数分区
public boolean isPrime(int candidate){
return IntStream.range(2,candidate)//产生一个自然数范围,从2开始,直至但不包括待测数
.noneMatch(i -> candidate % i ==0);//如果待测数字不能被流中任何数字整除则返回true
} //一个简单的优化是仅测试小于等于待测数平方根因子
public boolean isPrime(int candidate) {
int candidateRoot = (int) Math.sqrt(candidate);
return IntStream.rangeClosed(2, candidate).noneMatch(i -> candidate % i == 0);
} public Map<Boolean, List<Integer>> partitionPrimes(int n) {
return IntStream.rangeClosed(2, n).boxed().collect(partitioningBy(candidate -> isPrime(candidate)));
}

Collectors类的静态工厂方法

工厂方法 返回类型 用于
toList List< T > 把流中所有项目收集到一个List
List< Dish > dishes = menuStream.collect(toList());
toSset Set< T > 把流中所有项目收集到一个Set,删除重复项
Set< Dish > dishes = menuStream.collect(toSet());
toCollection Collection< T > 把流中所有项目收集到给定的供应源创建的集合
Collection< Dish > dishes = menuStream.collect(toCollection(),ArrayList::new);
counting Long 计算流中元素的个数
long howManyDishes = menuStream.collect(counting());
summingInt Integer 对流中项目的一个整数属性求和
int totalCalories = menuStream.collect(summingInt(Dish::getCalories));
averagingInt Double 计算流中项目Integer属性的平均值
double avgCalories = menuStream.collect(averagingInt(Dish::getCalories));
summarizingInt IntSummaryStatistics 收集关于流中项目Integer属性的统计值,例如最大,最小,总和与平均值
IntSummaryStatistics menuStaticstics = menuStream.collect(summarizingInt(Dish::getCalories));
joining String 连接对流中每个项目调用toString方法生成的字符串
String shortMenu = menuStream.map(Dish::getName).collect(joining(", "));
maxBy Optional< T > 选出最大元素的Optional
Optional< Dish > fattest = menuStream.collect(maxBy(comparingInt(Dish::getCalories)));
minBy Optional< T > 最小元素
Optional< Dish > fattest = menuStream.collect(minBy(comparingInt(Dish::getCalories)));
reducing 归约操作产生的类型 利用BinaryOperator与流中的元素逐个结合,从而将流归约为单个值
int totalCalories = menuStream.collect(reducing(0,Dish::getCalories,Integer::sum));
collectingAndThen 转换函数返回的类型 包裹另一个收集器,对其结果应用转换函数
int howManyDishes = menuStream.collect(collectingAndThe(toList(),List::size));
groupingBy Map< K ,List< T > > 根据项目的一个属性的值对流中的项目作问组,并将属性值作为结果Map的键
Map< Dish.Type,List< Dish>> dishesByType = menuStream.collect(groupingBy(Dish::getType));
partitioningBy Map< Boolean,List< T>> 分区
Map< Boolean, List< t>> vegetarianDishes = menuStream.collect(partitioningBy(Dish::isVegetarian));

java8中用流收集数据的更多相关文章

  1. Java 8 (5) Stream 流 - 收集数据

    在前面已经使用过collect终端操作了,主要是用来把Stream中的所有元素结合成一个List,在本章中,你会发现collect是一个归约操作,就像reduce一样可以接受各种做法作为参数,将流中的 ...

  2. 《Java 8 in Action》Chapter 6:用流收集数据

    1. 收集器简介 collect() 接收一个类型为 Collector 的参数,这个参数决定了如何把流中的元素聚合到其它数据结构中.Collectors 类包含了大量常用收集器的工厂方法,toLis ...

  3. 用Stream流轻易的收集数据

    前言 在日常使用集合时,我们通常使用迭代器来处理集合中的数据,假如有一个用户列表 List,我们想要将用户按照性别分组生成 Map<String, List>.需要遍历 List,然后判断 ...

  4. 何用Java8 Stream API进行数据抽取与收集

    上一篇中我们通过一个实例看到了Java8 Stream API 相较于传统的的Java 集合操作的简洁与优势,本篇我们依然借助于一个实际的例子来看看Java8 Stream API 如何抽取及收集数据 ...

  5. 【转】Java8 Stream 流详解

      当我第一次阅读 Java8 中的 Stream API 时,说实话,我非常困惑,因为它的名字听起来与 Java I0 框架中的 InputStream 和 OutputStream 非常类似.但是 ...

  6. 使用C#处理基于比特流的数据

    使用C#处理基于比特流的数据 0x00 起因 最近需要处理一些基于比特流的数据,计算机处理数据一般都是以byte(8bit)为单位的,使用BinaryReader读取的数据也是如此,即使读取bool型 ...

  7. 【java多线程】java8的流操作api和fork/join框架

    原文:https://blog.csdn.net/u011001723/article/details/52794455/ 一.测试一个案例,说明java8的流操作是并行操作 1.代码 package ...

  8. ASP.NET Core MVC中Controller的Action如何直接使用Response.Body的Stream流输出数据

    在ASP.NET Core MVC中,我们有时候需要在Controller的Action中直接输出数据到Response.Body这个Stream流中,例如如果我们要输出一个很大的文件到客户端浏览器让 ...

  9. C#_Excel数据读取与写入_自定义解析封装类_支持设置标题行位置&使用excel表达式收集数据&单元格映射&标题映射&模板文件的参数数据替换

    本篇博客园是被任务所逼,而已有的使用nopi技术的文档技术经验又不支持我需要的应对各种复杂需求的苛刻要求,只能自己造轮子封装了,由于需要应对很多总类型的数据采集需求,因此有了本篇博客的代码封装,下面一 ...

随机推荐

  1. Android之LinearLayout布局下怎么让按钮固定在底部

    <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android=&quo ...

  2. Python 爬虫从入门到进阶之路(十二)

    之前的文章我们介绍了 re 模块和 lxml 模块来做爬虫,本章我们再来看一个 bs4 模块来做爬虫. 和 lxml 一样,Beautiful Soup 也是一个HTML/XML的解析器,主要的功能也 ...

  3. 《Python 3网络爬虫开发实战中文》超清PDF+源代码+书籍软件包

    <Python 3网络爬虫开发实战中文>PDF+源代码+书籍软件包 下载: 链接:https://pan.baidu.com/s/18yqCr7i9x_vTazuMPzL23Q 提取码:i ...

  4. Scratch3 二次开发系列

       Scratch3.0来啦!!! Scratch做为图像化编程的首选语言,拖过积木块搭建实现动画游戏的制作.Scratch3添加了音乐.画笔.视频侦测.文字朗读.翻译等选择性下载扩展积木,可实现积 ...

  5. 你懂什么叫js继承吗

    说到继承呢?肯定有很多做java的朋友都觉得是一个比较简单的东西了.毕竟面向对象的三大特征就是:封装.继承和多态嘛.但是真正对于一个javascript开发人员来说,很多时候其实你使用了继承,但其实你 ...

  6. 修改Windows10的host文件。

    一.Windows10中host地址. c:\windows\system32\drivers\etc\hosts 其他系统中的位置. Windows操作系统(Windows XP/7/8/10): ...

  7. 乘法口诀表(C语言实现)

    输出乘法口诀表,关键在于利用好循环语句,而且是二层循环.

  8. CF1027D Mouse Hunt题解

    题目: 伯兰州立大学的医学部刚刚结束了招生活动.和以往一样,约80%的申请人都是女生并且她们中的大多数人将在未来4年(真希望如此)住在大学宿舍里. 宿舍楼里有nn个房间和一只老鼠!女孩们决定在一些房间 ...

  9. ListView在ScrollView中不显示全部的问题

    在实际应用中,我们可能会遇到把ListView放到ScrollView中的情况,在这种情况下,ListView的滑动属性与ScrollView的滑动出现冲突,从而ListView只显示一项.这里提供一 ...

  10. 【HDU - 6581】Vacation(思维)

    Vacation 题意 有n+1辆车,属性有长度l,距离终点的距离s,速度v问你最末尾的车到达终点的时间 Sample Input 1 2 2 7 1 2 1 2 1 2 2 10 7 1 6 2 1 ...