/*
** 无向图拆点,求最大流,最大流即为割点个数。
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std;
const int maxn = 410;
const int maxm = 100100;
const int INF = 200000000;
struct node{
int v,flow,next;
}edge[maxm];
int head[maxn],dis[maxn],aug[maxn];
int n,m,s,t,id;
void add_edge(int u,int v,int flow){
edge[id].v = v;edge[id].flow = flow;edge[id].next = head[u];head[u] = id++;
edge[id].v = u;edge[id].flow = 0 ;edge[id].next = head[v];head[v] = id++;
}
void init(){
int cost,u,v;
memset(head,-1,sizeof(head));id = 0;
for(int i = 1; i <= n; i++){
scanf("%d",&cost);
add_edge(i,i+n,cost);
}
//v入,v+n出
while( m-- ){
scanf("%d%d",&u,&v);
add_edge(u+n,v,INF);
add_edge(v+n,u,INF);
}
add_edge(0,s,INF);
add_edge(t+n,n*2+1,INF);
s = 0,t = n*2+1;
}
bool bfs(){
memset(dis,-1,sizeof(dis));
queue<int>que;
dis[s] = 0;
que.push(s);
while(!que.empty()){
int u = que.front();
que.pop();
for(int id = head[u]; id != -1; id = edge[id].next){
int v = edge[id].v;
if( edge[id].flow > 0 && dis[v] == -1){
dis[v] = dis[u] + 1;
que.push(v);
}
}
}
return dis[t] != -1;
}
int min(int x,int y){
return x < y ? x : y;
}
int dinic(int u,int flow){
if(u == t || flow == 0)return flow;
int tmp = flow;
for(int id = head[u]; id != -1; id = edge[id].next){
int v = edge[id].v;
if( edge[id].flow > 0 && dis[v] == dis[u] + 1){
int tt = dinic(v,min(tmp,edge[id].flow));
tmp -= tt;
edge[id].flow -= tt;
edge[id^1].flow += tt;
if(tmp == 0) break;
}
}
return flow - tmp;
}
int main(){
//freopen("in.txt","r",stdin);
while(~scanf("%d%d",&n,&m)){
scanf("%d%d",&s,&t);
init();
// cout << id << endl;
int max_flow = 0;
while(bfs())
max_flow += dinic(s,INF);
printf("%d\n",max_flow);
}
return 0;
}

  

HDU4289Control 无向图拆点最大流的更多相关文章

  1. hdu4289 最小割最大流 (拆点最大流)

    最小割最大流定理:(参考刘汝佳p369)增广路算法结束时,令已标号结点(a[u]>0的结点)集合为S,其他结点集合为T=V-S,则(S,T)是图的s-t最小割. Problem Descript ...

  2. Risk UVA - 12264 拆点法+最大流+二分 最少流量的节点流量尽量多。

    /** 题目:Risk UVA - 12264 链接:https://vjudge.net/problem/UVA-12264 题意:给n个点的无权无向图(n<=100),每个点有一个非负数ai ...

  3. Control(拆点+最大流)

    Control http://acm.hdu.edu.cn/showproblem.php?pid=4289 Time Limit: 2000/1000 MS (Java/Others)    Mem ...

  4. BZOJ 1877 晨跑 拆点费用流

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1877 题目大意: Elaxia最近迷恋上了空手道,他为自己设定了一套健身计划,比如俯卧 ...

  5. ZOJ 2182 Cable TV Network(无向图点割-最大流)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2182 题意:给出一个无向图,问最少删掉多少个顶点之后图变得不连通 ...

  6. POJ 2391 Ombrophobic Bovines(二分+拆点+最大流)

    http://poj.org/problem?id=2391 题意: 给定一个无向图,点i处有Ai头牛,点i处的牛棚能容纳Bi头牛,求一个最短时间T,使得在T时间内所有的牛都能进到某一牛棚里去. 思路 ...

  7. HDU 3572 Task Schedule(拆点+最大流dinic)

    Task Schedule Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  8. POJ 2391 Ombrophobic Bovines ★(Floyd+二分+拆点+最大流)

    [题意]有n块草地,一些奶牛在草地上吃草,草地间有m条路,一些草地上有避雨点,每个避雨点能容纳的奶牛是有限的,给出通过每条路的时间,问最少需要多少时间能让所有奶牛进入一个避雨点. 和POJ2112很类 ...

  9. CF 277E Binary Tree on Plane (拆点 + 费用流) (KM也可做)

    题目大意: 平面上有n个点,两两不同.现在给出二叉树的定义,要求树边一定是从上指向下,即从y坐标大的点指向小的点,并且每个结点至多有两个儿子.现在让你求给出的这些点是否能构成一棵二叉树,如果能,使二叉 ...

随机推荐

  1. Linux之TCPIP内核参数

    /proc/sys/net目录 参考1.Linux之TCPIP内核参数优化 所有的TCP/IP参数都位于/proc/sys/net目录下(请注意,对/proc/sys/net目录下内容的修改都是临时的 ...

  2. 【JDK】JDK源码分析-TreeMap(2)

    前文「JDK源码分析-TreeMap(1)」分析了 TreeMap 的一些方法,本文分析其中的增删方法.这也是红黑树插入和删除节点的操作,由于相对复杂,因此单独进行分析. 插入操作 该操作其实就是红黑 ...

  3. Python 与数据库交互

    安装:pip3 install pymysql 引入模块在python3里:from pymysql import * 使用步骤:1.创建Connection对象,用于建立与数据库的连接,创建对象调用 ...

  4. restapi(3)- MongoDBEngine : MongoDB Scala编程工具库

    最近刚好有同事在学习MongoDB,我们讨论过MongoDB应该置于服务器端然后通过web-service为客户端提供数据的上传下载服务.我们可以用上节讨论的respapi框架来实现针对MongoDB ...

  5. [Chat]实战:仿网易云课堂微信小程序开发核心技术剖析和经验分享

    本Chat以一个我参与开发并已上线运营近2年——类似网易云课堂的微信小程序项目,来进行微信小程序高级开发的学习. 本场Chat围绕项目开发核心技术分析,帮助你快速掌握在线视频.音频类小程序开发所需要的 ...

  6. TensorFlow学习笔记——深层神经网络的整理

    维基百科对深度学习的精确定义为“一类通过多层非线性变换对高复杂性数据建模算法的合集”.因为深层神经网络是实现“多层非线性变换”最常用的一种方法,所以在实际中可以认为深度学习就是深度神经网络的代名词.从 ...

  7. 完全零基础在Linux中安装 JDK

    完全零基础在Linux中安装 JDK 总体思路:先确定没有Java程序了 — 然后创建相应路径文件夹 — 下载JDK — 解压到当前路径 — 自定义文件名称 — 配置环境变量 — 检查是否安装成功 第 ...

  8. Flink 源码解析 —— 源码编译运行

    更新一篇知识星球里面的源码分析文章,去年写的,周末自己录了个视频,大家看下效果好吗?如果好的话,后面补录发在知识星球里面的其他源码解析文章. 前言 之前自己本地 clone 了 Flink 的源码,编 ...

  9. Vue系列:.sync 修饰符的作用及使用范例

    作用:对传递给子组件的 prop 数据进行“双向绑定”.(正常情况下,prop 的数据都是单向数据流) 代码参考如下: 父组件部分 子组件部分

  10. 多线程 共享资源 同步锁 java

    Java多线程编程:Lock   synchronized是java中的一个关键字,也就是说是Java语言内置的特性.那么为什么会出现Lock呢? 如果一个代码块被synchronized修饰了,当一 ...