Educational Codeforces Round 69 (Rated for Div. 2)
Let's denote a kk-step ladder as the following structure: exactly k+2k+2 wooden planks, of which
- two planks of length at least k+1k+1 — the base of the ladder;
- kk planks of length at least 11 — the steps of the ladder;
Note that neither the base planks, nor the steps planks are required to be equal.
For example, ladders 11 and 33 are correct 22-step ladders and ladder 22 is a correct 11-step ladder. On the first picture the lengths of planks are [3,3][3,3] for the base and [1][1] for the step. On the second picture lengths are [3,3][3,3] for the base and [2][2] for the step. On the third picture lengths are [3,4][3,4] for the base and [2,3][2,3] for the steps.
You have nn planks. The length of the ii-th planks is aiai. You don't have a saw, so you can't cut the planks you have. Though you have a hammer and nails, so you can assemble the improvised "ladder" from the planks.
The question is: what is the maximum number kk such that you can choose some subset of the given planks and assemble a kk-step ladder using them?
The first line contains a single integer TT (1≤T≤1001≤T≤100) — the number of queries. The queries are independent.
Each query consists of two lines. The first line contains a single integer nn (2≤n≤1052≤n≤105) — the number of planks you have.
The second line contains nn integers a1,a2,…,ana1,a2,…,an (1≤ai≤1051≤ai≤105) — the lengths of the corresponding planks.
It's guaranteed that the total number of planks from all queries doesn't exceed 105105.
Print TT integers — one per query. The ii-th integer is the maximum number kk, such that you can choose some subset of the planks given in the ii-th query and assemble a kk-step ladder using them.
Print 00 if you can't make even 11-step ladder from the given set of planks.
4
4
1 3 1 3
3
3 3 2
5
2 3 3 4 2
3
1 1 2
2
1
2
0
Examples for the queries 1−31−3 are shown at the image in the legend section.
The Russian meme to express the quality of the ladders:
题解: n 个木棍,搭建 k 步梯的条件:
1.有 k + 2个木头
2.k + 2 个木头中选取最大的两个基地
3.剩下的有多少个木头小于基地中最小的木头。
核心方程:min(a[n-1]-1,min(a[n-2]-1,n-2))
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
int main()
{
int T,a[];
while(~scanf(" %d",&T))
{
memset(a,,sizeof(a));
while(T--)
{
int n;
scanf(" %d",&n);
for(int i = ; i < n; i++)
scanf("%d",&a[i]);
sort(a,a+n);
cout<<min(a[n-]-,min(a[n-]-,n-))<<endl;
}
}
return ;
}
standard output
There are nn pillars aligned in a row and numbered from 11 to nn.
Initially each pillar contains exactly one disk. The ii-th pillar contains a disk having radius aiai.
You can move these disks from one pillar to another. You can take a disk from pillar ii and place it on top of pillar jj if all these conditions are met:
- there is no other pillar between pillars ii and jj. Formally, it means that |i−j|=1|i−j|=1;
- pillar ii contains exactly one disk;
- either pillar jj contains no disks, or the topmost disk on pillar jj has radius strictly greater than the radius of the disk you move.
When you place a disk on a pillar that already has some disks on it, you put the new disk on top of previously placed disks, so the new disk will be used to check the third condition if you try to place another disk on the same pillar.
You may take any disk and place it on other pillar any number of times, provided that every time you do it, all three aforementioned conditions are met. Now you wonder, is it possible to place all nn disks on the same pillar simultaneously?
The first line contains one integer nn (3≤n≤2⋅1053≤n≤2⋅105) — the number of pillars.
The second line contains nn integers a1a1, a2a2, ..., aiai (1≤ai≤n1≤ai≤n), where aiai is the radius of the disk initially placed on the ii-th pillar. All numbers aiai are distinct.
Print YES if it is possible to place all the disks on the same pillar simultaneously, and NO otherwise. You may print each letter in any case (YES, yes, Yes will all be recognized as positive answer, NO, no and nO will all be recognized as negative answer).
4
1 3 4 2
YES
3
3 1 2
NO
In the first case it is possible to place all disks on pillar 33 using the following sequence of actions:
- take the disk with radius 33 from pillar 22 and place it on top of pillar 33;
- take the disk with radius 11 from pillar 11 and place it on top of pillar 22;
- take the disk with radius 22 from pillar 44 and place it on top of pillar 33;
- take the disk with radius 11 from pillar 22 and place it on top of pillar 33;
题解:n 个盘子从 i 移动到 j,题目限制条件:
1. i 与 j 要相邻;
2.呈现逐渐递减的趋势
若能够满足上述两个条件,输出"YES",反之输出"NO".
#include <cstring>
#include <cmath>
#include <cstdio>
#include <cctype>
#include <cstdlib>
#include <ctime>
#include <vector>
#include <iostream>
#include <string>
#include <queue>
#include <set>
#include <map>
#include <algorithm>
#include <complex>
#include <stack>
#include <bitset>
#include <iomanip>
#include <list>
#if __cplusplus >= 201103L
#include <unordered_map>
#include <unordered_set>
#endif // __cplusplus
#define ll long long
#define ull unsigned long long
using namespace std;
const double clf = 1e-;
const int INF = 0x7fffffff;
const int MMAX = 0xfffffff;
const int mod = 1e9 + ;
int arr[];
int main()
{
ios::sync_with_stdio(false);
cin.tie();
cout.tie();
int n,position,MAXX = -;
cin>>n;
for(int i = ; i <= n; i++)
{
cin>>arr[i];
if(arr[i] > MAXX)
{
MAXX = arr[i];
position = i;
}
}
for(int i = position; i <= n; i++)
if(arr[i] < arr[i+])
{
printf("NO\n");
return ;
}
for(int i = position; i > ; i--)
if(arr[i] < arr[i-])
{
printf("NO\n");
return ;
}
printf("YES\n");
return ;
}
You are given a sorted array a1,a2,…,ana1,a2,…,an (for each index i>1i>1 condition ai≥ai−1ai≥ai−1 holds) and an integer kk.
You are asked to divide this array into kk non-empty consecutive subarrays. Every element in the array should be included in exactly one subarray.
Let max(i)max(i) be equal to the maximum in the ii-th subarray, and min(i)min(i) be equal to the minimum in the ii-th subarray. The cost of division is equal to ∑i=1k(max(i)−min(i))∑i=1k(max(i)−min(i)). For example, if a=[2,4,5,5,8,11,19]a=[2,4,5,5,8,11,19] and we divide it into 33 subarrays in the following way: [2,4],[5,5],[8,11,19][2,4],[5,5],[8,11,19], then the cost of division is equal to (4−2)+(5−5)+(19−8)=13(4−2)+(5−5)+(19−8)=13.
Calculate the minimum cost you can obtain by dividing the array aa into kk non-empty consecutive subarrays.
The first line contains two integers nn and kk (1≤k≤n≤3⋅1051≤k≤n≤3⋅105).
The second line contains nn integers a1,a2,…,ana1,a2,…,an (1≤ai≤1091≤ai≤109, ai≥ai−1ai≥ai−1).
Print the minimum cost you can obtain by dividing the array aa into kk nonempty consecutive subarrays.
6 3
4 8 15 16 23 42
12
4 4
1 3 3 7
0
8 1
1 1 2 3 5 8 13 21
20
In the first test we can divide array aa in the following way: [4,8,15,16],[23],[42][4,8,15,16],[23],[42].
题解:n 个数分解成 k 个区间,用区间最大值减去最小值,问:m 个数 k 个 区间的最小值。
差分乱搞
#include <iostream>
#include <cstdio>
#include <algorithm>
#define ll long long
using namespace std;
const int N = 3e5 + ;
int a[N],dis[N];
int main()
{
ios::sync_with_stdio(false);
cin.tie(); cout.tie();
int n,k;
cin>>n>>k;
for(int i = ; i < n; i++)
cin>>a[i];
for(int i = ; i < n - ; i++)
dis[i] = a[i+] - a[i];
sort(dis,dis+n-);
ll ans = ;
for(int i = ; i < n - k; i++)
ans += dis[i];
cout<<ans<<endl;
return ;
}
You are given an array a1,a2,…,ana1,a2,…,an and two integers mm and kk.
You can choose some subarray al,al+1,…,ar−1,aral,al+1,…,ar−1,ar.
The cost of subarray al,al+1,…,ar−1,aral,al+1,…,ar−1,ar is equal to ∑i=lrai−k⌈r−l+1m⌉∑i=lrai−k⌈r−l+1m⌉, where ⌈x⌉⌈x⌉ is the least integer greater than or equal to xx.
The cost of empty subarray is equal to zero.
For example, if m=3m=3, k=10k=10 and a=[2,−4,15,−3,4,8,3]a=[2,−4,15,−3,4,8,3], then the cost of some subarrays are:
- a3…a3:15−k⌈13⌉=15−10=5a3…a3:15−k⌈13⌉=15−10=5;
- a3…a4:(15−3)−k⌈23⌉=12−10=2a3…a4:(15−3)−k⌈23⌉=12−10=2;
- a3…a5:(15−3+4)−k⌈33⌉=16−10=6a3…a5:(15−3+4)−k⌈33⌉=16−10=6;
- a3…a6:(15−3+4+8)−k⌈43⌉=24−20=4a3…a6:(15−3+4+8)−k⌈43⌉=24−20=4;
- a3…a7:(15−3+4+8+3)−k⌈53⌉=27−20=7a3…a7:(15−3+4+8+3)−k⌈53⌉=27−20=7.
Your task is to find the maximum cost of some subarray (possibly empty) of array aa.
The first line contains three integers nn, mm, and kk (1≤n≤3⋅105,1≤m≤10,1≤k≤1091≤n≤3⋅105,1≤m≤10,1≤k≤109).
The second line contains nn integers a1,a2,…,ana1,a2,…,an (−109≤ai≤109−109≤ai≤109).
Print the maximum cost of some subarray of array aa.
7 3 10
2 -4 15 -3 4 8 3
7
5 2 1000
-13 -4 -9 -20 -11
0
题解:
1.确定状态:dp[ i ][ j ] 表示第 i 个数,长度为 j 的区间
2.状态转移方程:dp[ i ][ j ] = dp[ i - 1][ j - 1] + a[ i ]( j > 1)
dp[ i ][ j ] = max(dp[ i - 1][ m - 1 ] + a[ i ] - k,a[ i ] - k)(j == 1)
dp[ i ][ j ] = dp[ i - 1][ m - 1 ] + a[ i ];
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N = 3e5 + ;
const int inf = 0x3f3f3f3f;
ll dp[N][]; /*dp[i][j]代表的是以i为末尾位,长度对m取余等于j的这一段长度的计算和
*/
ll a[N];
int main()
{
ios::sync_with_stdio(false);
cin.tie();cout.tie();
int n,m,k;
cin>>n>>m>>k;
for(int i = ; i <= n; ++i)
cin>>a[i];
ll ans = ;
memset(dp,-inf,sizeof(dp));
if(m == )
{
for(int i = ; i <= n; ++i)
{
for(int j = ; j < m; ++j)
{
dp[i][j] = max(dp[i - ][] + a[i] - k,a[i] - k);
ans = max(dp[i][j],ans);
}
}
}
else
{
for(int i = ; i <= n; ++i)
{
for(int j = ; j < m; ++j)
{
if(j == )
dp[i][j] = dp[i - ][m - ] + a[i];
else if(j == ) /*j == 1代表现在末尾取到第i位的长度比之前取到i-1位多了一个余数1,由于向上去整,所以多剪掉了一个k,还得在加上一个a[i]*/
dp[i][j] = max(dp[i - ][] + a[i] - k,a[i] - k);
else
dp[i][j] = dp[i - ][j - ] + a[i];
ans = max(dp[i][j],ans);
}
}
}
cout<<ans<<endl;
return ;
}
Educational Codeforces Round 69 (Rated for Div. 2)的更多相关文章
- Educational Codeforces Round 69 (Rated for Div. 2) E. Culture Code
Educational Codeforces Round 69 (Rated for Div. 2) E. Culture Code 题目链接 题意: 给出\(n\)个俄罗斯套娃,每个套娃都有一个\( ...
- Educational Codeforces Round 69 (Rated for Div. 2) D. Yet Another Subarray Problem 背包dp
D. Yet Another Subarray Problem You are given an array \(a_1, a_2, \dots , a_n\) and two integers \( ...
- Educational Codeforces Round 69 (Rated for Div. 2) C. Array Splitting 水题
C. Array Splitting You are given a sorted array
- Educational Codeforces Round 69 (Rated for Div. 2) A~D Sloution
A. DIY Wooden Ladder 题意:有一些不能切的木板,每个都有一个长度,要做一个梯子,求梯子的最大台阶数 做梯子的木板分为两种,两边的两条木板和中间的若干条台阶木板 台阶数为 $k$ 的 ...
- Educational Codeforces Round 69 (Rated for Div. 2)D(DP,思维)
#include<bits/stdc++.h>using namespace std;int a[300007];long long sum[300007],tmp[300007],mx[ ...
- Educational Codeforces Round 69 (Rated for Div. 2) C. Array Splitting (思维)
题意:给你一个长度为\(n\)的升序序列,将这个序列分成\(k\)段,每一段的值为最大值和最小值的差,求\(k\)段值的最小和. 题解:其实每一段的最大值和最小值的差,其实就是这段元素的差分和,因为是 ...
- Educational Codeforces Round 69 (Rated for Div. 2) D. Yet Another Subarray Problem 【数学+分块】
一.题目 D. Yet Another Subarray Problem 二.分析 公式的推导时参考的洛谷聚聚们的推导 重点是公式的推导,推导出公式后,分块是很容易想的.但是很容易写炸. 1 有些地方 ...
- Educational Codeforces Round 60 (Rated for Div. 2) - C. Magic Ship
Problem Educational Codeforces Round 60 (Rated for Div. 2) - C. Magic Ship Time Limit: 2000 mSec P ...
- Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems(动态规划+矩阵快速幂)
Problem Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems Time Limit: 3000 mSec P ...
随机推荐
- 数字麦克风PDM信号采集与STM32 I2S接口应用
数字麦克风采用MEMS技术,将声波信号转换为数字采样信号,由单芯片实现采样量化编码,一般而言数字麦克风的输出有PDM麦克风和PCM麦克风,由于PDM麦克风结构.工艺简单而大量应用,在使用中要注意这二者 ...
- 开发一个Spring Boot Starter!
在上一篇文章中,我们已经了解了一个starter实现自动配置的基本流程,在这一小结我们将复现上一过程,实现一个自定义的starter. 先来分析starter的需求: 在项目中添加自定义的starte ...
- Python基础总结之初步认识---clsaa类(上)。第十四天开始(新手可相互督促)
最近的类看着很疼,坚持就是胜利~~~ python中的类,什么是类?类是由属性和方法组成的.类中可能有很多属性,以及方法. 我们这样定义一个类: 前面是class关键字 后面school是一个类的名字 ...
- sed流编辑器
一.前言 (一).sed 工作流程 sed 是一种在线的.非交互式的流编辑器,它一次处理一行内容.处理时,把当做前处理的行存储在临时缓存区中,成为“模式空间”(pattern space),接着用se ...
- JavaFX 集成 Sqlite 和 Hibernate 开发爬虫应用
目录 [隐藏] 0.1 前言: 0.2 界面 0.3 Maven 环境 0.4 项目结构 0.5 整合 Hibernate 0.5.1 SQLiteDialect.java 数据库方言代码 0.5.2 ...
- luogu1373_小a和uim之大逃离 多维dp
传送门 巧妙之处在于dp的设计只用设计差值即可,因此不会mle,枚举的顺序问题也解决了 #include <bits/stdc++.h> using namespace std; #def ...
- 第十五章 LVM管理和ssm存储管理器使用 随堂笔记
第十五章 LVM管理和ssm存储管理器使用 本节所讲内容: 15.1 LVM的工作原理 15.2 创建LVM的基本步骤 15.3 实战-使用SSM工具为公司的邮件服务器创建可动态扩容的存储池 LVM的 ...
- 【JDK】JDK源码分析-CyclicBarrier
概述 CyclicBarrier 是并发包中的一个工具类,它的典型应用场景为:几个线程执行完任务后,执行另一个线程(回调函数,可选),然后继续下一轮,如此往复. 打个通俗的比方,可以把 CyclicB ...
- FTP工具-FileZilla安装使用教程
1.首先,百度搜索“FileZilla”,进入官网,下载地址:https://www.filezilla.cn/download/client ,根据自己电脑配置去下载 2.下载本地,双击运行安装程 ...
- 统一流控服务开源:基于.Net Core的流控服务
先前有一篇博文,梳理了流控服务的场景.业界做法和常用算法 统一流控服务开源-1:场景&业界做法&算法篇 最近完成了流控服务的开发,并在生产系统进行了大半年的验证,稳定可靠.今天整理一下 ...