HDU2276 Kiki & Little Kiki 2 矩阵快速幂
Kiki & Little Kiki 2
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3078 Accepted Submission(s): 1642
Change the state of light i (if it's on, turn off it; if it is not on, turn on it) at t+1 second (t >= 0), if the left of light i is on !!! Given the initiation state, please find all lights’ state after M second. (2<= n <= 100, 1<= M<= 10^8)
If the ith character of T is '1', it means the light i is on, otherwise the light is off.
0101111
10
100000001
001000010
#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <vector>
#include <string>
#include <cstring>
#include <iostream>
#include <algorithm>
#define debug(a) cout << #a << " " << a << endl
using namespace std;
const int maxn = 110; //注意空间的大小,开多了会炸程序,尤其在程序中有多个矩阵的时候,最好开到刚刚符合题目要求
const int mod = 2;
typedef long long ll;
struct matrix {
ll a[maxn][maxn];
};
matrix base, ans;
ll n;
string s;
matrix multip( matrix x, matrix y ) {
matrix tmp;
for( ll i = 0; i < s.length(); i ++ ) {
for( ll j = 0; j < s.length(); j ++ ) {
tmp.a[i][j] = 0;
for( ll k = 0; k < s.length(); k ++ ) {
tmp.a[i][j] = ( tmp.a[i][j] + x.a[i][k] * y.a[k][j] + mod ) % mod;
}
}
}
return tmp;
}
void f( ll x ) {
while( x ) {
if( x&1 ) {
ans = multip( ans, base );
}
base = multip( base, base );
x /= 2;
}
}
int main() {
while( cin >> n >> s ) {
memset( ans.a, 0, sizeof(ans.a) );
memset( base.a, 0, sizeof(base.a) );
for( ll i = 0; i < s.length(); i ++ ) {
ans.a[0][i] = s[i]-'0';
}
for( ll i = 0; i < s.length(); i ++ ) {
if( i != s.length()-1 ) {
base.a[i][i] = base.a[i][i+1] = 1;
} else {
base.a[i][i] = base.a[i][0] = 1;
}
}
f(n);
for( ll i = 0; i < s.length(); i ++ ) {
cout << ans.a[0][i];
}
cout << endl;
}
return 0;
}
HDU2276 Kiki & Little Kiki 2 矩阵快速幂的更多相关文章
- HDU 2276 Kiki & Little Kiki 2( 矩阵快速幂 + 循环同构矩阵 )
蒟蒻的我还需深入学习 链接:传送门 题意:给出一个长度为 n,n 不超过100的 01 串 s ,每当一个数字左侧为 1 时( 0的左侧是 n-1 ),这个数字就会发生改变,整个串改变一次需要 1s ...
- 矩阵快速幂之Kiki & Little Kiki 2
题意是:给出一串01串,每一秒,每个位置得灯会根据左边那个灯得状态进行改变,(第一个得左边为最后一个)如果左边为1,那么自己就会改变状态,左边为0则不用,问n秒改01串的状态 ///// 首先,我们发 ...
- 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)
题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...
- 51nod 算法马拉松18 B 非010串 矩阵快速幂
非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模) ...
- 51nod 1113 矩阵快速幂
题目链接:51nod 1113 矩阵快速幂 模板题,学习下. #include<cstdio> #include<cmath> #include<cstring> ...
- 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】
还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...
- HDU5950(矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 题意:f(n) = f(n-1) + 2*f(n-2) + n^4,f(1) = a , f(2 ...
- 51nod 1126 矩阵快速幂 水
有一个序列是这样定义的:f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. 给出A,B和N,求f(n)的值. Input 输 ...
- hdu2604(递推,矩阵快速幂)
题目链接:hdu2604 这题重要的递推公式,找到公式就很easy了(这道题和hdu1757(题解)类似,只是这道题需要自己推公式) 可以直接找规律,推出递推公式,也有另一种找递推公式的方法:(PS: ...
随机推荐
- 动态开内存(malloc与calloc)
malloc与calloc 1.函数原型 #include<stdlib.h> void *malloc(unsigned int size); //申请size字节的内存 voi ...
- Hexo结合github制作博客
https://blog.csdn.net/Hoshea_chx/article/details/78826689 hexo(themes) vuePress jekylly
- Android活动(Activity)创建及生命周期
Activity是Android的门面,可以与用户进行互动的重要模块,凡是在应用中可以看到的东西,都是放在活动中的. 在学习新的技术时,我喜欢将需要学习的技术与自己懂得技术进行类似比较,而活 ...
- Altium Designer16绘制51单片机的一些经验总结
制作这块51单片机的还是蛮艰辛的,应该是我水平太差,现在这块51板已经稳定了,也把这块板子制作过程中的一些问题及经验总结记录下来.这块板子制作出了很大问题很大原因是因为我对Altium Designe ...
- java-极光推送教程
一.准备工作: 1.访问极光推送官网:https://www.jiguang.cn/accounts/login/form 2.注册登陆,拿到appKey和masterSecret 3.创建一个应用, ...
- 邻域保持嵌入(NPE)
传统的线性降维方法,如主成分分析(PCA).因子分析(FA)等,关注的是样本的方差,能学习线性流形的结构,却无法学习非线性流形.而经典的流形学习方法虽然能够学习非线性流形结构,但由于本身属于直推学习, ...
- 洛谷 P3628 特别行动队
洛谷题目页面传送门 题意见洛谷. 这题一看就是DP... 设\(dp_i\)表示前\(i\)个士兵的最大战斗力.显然,最终答案为\(dp_n\),DP边界为\(dp_0=0\),状态转移方程为\(dp ...
- 洛谷 P1939 矩阵加速(数列)
题意简述 \(a[1]=a[2]=a[3]=1\) \(a[x]=a[x−3]+a[x−1](x>3)\) 求a数列的第n项对1000000007取余的值. 题解思路 矩阵加速 设\[ F=\b ...
- Hive安装与部署
进去root权限(su) 1.从https://mirrors.tuna.tsinghua.edu.cn/apache/hive/hive-1.2.2/apache-hive-1.2.2-bin.ta ...
- (三)(1)线程间通信---wait和notify的使用
这篇博客记录线程间通信相关api使用以及理解. 首先第一点,我之前的博客里的线程之间也是通信的,但是他们的通信是建立在访问的是同一个变量上的,相当于是变量.数据层面上的通信,而下面要讲的是线程层面上的 ...