HDU2276 Kiki & Little Kiki 2 矩阵快速幂
Kiki & Little Kiki 2
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3078 Accepted Submission(s): 1642
Change the state of light i (if it's on, turn off it; if it is not on, turn on it) at t+1 second (t >= 0), if the left of light i is on !!! Given the initiation state, please find all lights’ state after M second. (2<= n <= 100, 1<= M<= 10^8)
If the ith character of T is '1', it means the light i is on, otherwise the light is off.
0101111
10
100000001
001000010
#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <vector>
#include <string>
#include <cstring>
#include <iostream>
#include <algorithm>
#define debug(a) cout << #a << " " << a << endl
using namespace std;
const int maxn = 110; //注意空间的大小,开多了会炸程序,尤其在程序中有多个矩阵的时候,最好开到刚刚符合题目要求
const int mod = 2;
typedef long long ll;
struct matrix {
ll a[maxn][maxn];
};
matrix base, ans;
ll n;
string s;
matrix multip( matrix x, matrix y ) {
matrix tmp;
for( ll i = 0; i < s.length(); i ++ ) {
for( ll j = 0; j < s.length(); j ++ ) {
tmp.a[i][j] = 0;
for( ll k = 0; k < s.length(); k ++ ) {
tmp.a[i][j] = ( tmp.a[i][j] + x.a[i][k] * y.a[k][j] + mod ) % mod;
}
}
}
return tmp;
}
void f( ll x ) {
while( x ) {
if( x&1 ) {
ans = multip( ans, base );
}
base = multip( base, base );
x /= 2;
}
}
int main() {
while( cin >> n >> s ) {
memset( ans.a, 0, sizeof(ans.a) );
memset( base.a, 0, sizeof(base.a) );
for( ll i = 0; i < s.length(); i ++ ) {
ans.a[0][i] = s[i]-'0';
}
for( ll i = 0; i < s.length(); i ++ ) {
if( i != s.length()-1 ) {
base.a[i][i] = base.a[i][i+1] = 1;
} else {
base.a[i][i] = base.a[i][0] = 1;
}
}
f(n);
for( ll i = 0; i < s.length(); i ++ ) {
cout << ans.a[0][i];
}
cout << endl;
}
return 0;
}
HDU2276 Kiki & Little Kiki 2 矩阵快速幂的更多相关文章
- HDU 2276 Kiki & Little Kiki 2( 矩阵快速幂 + 循环同构矩阵 )
蒟蒻的我还需深入学习 链接:传送门 题意:给出一个长度为 n,n 不超过100的 01 串 s ,每当一个数字左侧为 1 时( 0的左侧是 n-1 ),这个数字就会发生改变,整个串改变一次需要 1s ...
- 矩阵快速幂之Kiki & Little Kiki 2
题意是:给出一串01串,每一秒,每个位置得灯会根据左边那个灯得状态进行改变,(第一个得左边为最后一个)如果左边为1,那么自己就会改变状态,左边为0则不用,问n秒改01串的状态 ///// 首先,我们发 ...
- 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)
题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...
- 51nod 算法马拉松18 B 非010串 矩阵快速幂
非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模) ...
- 51nod 1113 矩阵快速幂
题目链接:51nod 1113 矩阵快速幂 模板题,学习下. #include<cstdio> #include<cmath> #include<cstring> ...
- 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】
还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...
- HDU5950(矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 题意:f(n) = f(n-1) + 2*f(n-2) + n^4,f(1) = a , f(2 ...
- 51nod 1126 矩阵快速幂 水
有一个序列是这样定义的:f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. 给出A,B和N,求f(n)的值. Input 输 ...
- hdu2604(递推,矩阵快速幂)
题目链接:hdu2604 这题重要的递推公式,找到公式就很easy了(这道题和hdu1757(题解)类似,只是这道题需要自己推公式) 可以直接找规律,推出递推公式,也有另一种找递推公式的方法:(PS: ...
随机推荐
- .Net集合详解
前言 前面几篇文章讲了泛型.讲了数组,都有提到集合,这一节重点对集合进行详细解说.本文主要使用各种集合类型.以至于评估其性能,针对不同的场景选择不同的集合使用. 集合分类详解 一.列表 列表的创建 v ...
- 五、Python基础(2)
五,Python基础(2) 1.数据类型基础 (一)什么是数据类型? 用于区分变量值的不同类型. (二)为何对数据分类? 针对不同状态就应该用不同类型的数据去标识. (三)数据类型分类 1.数字类型 ...
- 挂起(suspend)与线程阻塞工具类LockSupport
挂起(suspend)与线程阻塞工具类LockSupport 一般来说是不推荐使用suspend去挂起线程的,因为suspend在导致线程暂停的同时,并不会去释放任何锁资源. 如果其他任何线程想要访问 ...
- 记一次使用LR测试UDP和TCP的过程
背景 最近项目要做性能测试,要出要一份性能报告,让我出一个有关Tcp和Udp的功能模块的测试,流程大概是这样,先走TCP协议协商一下会话,协商成功后走Udp收发数据. 有点简单啊,自己写个功能模块测一 ...
- FTP工具-FileZilla安装使用教程
1.首先,百度搜索“FileZilla”,进入官网,下载地址:https://www.filezilla.cn/download/client ,根据自己电脑配置去下载 2.下载本地,双击运行安装程 ...
- 基于RobotFramework实现自动化测试
Java + robotframework + seleniumlibrary 使用Robot Framework Maven Plugin(http://robotframework.org/Mav ...
- linux100day(day4)--文本处理三剑客
在介绍三剑客之前,先来认识一下通配符和正则表达式 通配符 正则表达式 作用:通过一些特殊字符,来表示一类字符内容 1.字符匹配 . 任意一个字符 [ ] 范围内的任意一个字符 [^ ] 取 ...
- 直击根源:微信小程序中web-view再次刷新后页面需要退两次
背景 在上一章(直击根源:vue项目微信小程序页面跳转web-view不刷新)解决了vue在小程序回退不刷新的问题之后,会引出了一个刷新的页面需要点击返回两次才能返回上一个页面 问题描述 在A页面从B ...
- Redis之对象篇——Redis对象系统简介
Redis之对象篇--Redis对象系统简介 前言 之前几篇文章,简单介绍 Redis用到的所有主要数据结构,简单动态字符串(SDS).双端链表.字典.压缩列表.整数集合.跳跃表. 图解Red ...
- [HAOI2018]苹果树(组合数学,计数)
[HAOI2018]苹果树 cx巨巨给我的大火题. 感觉这题和上次考试gcz讲的那道有标号树的形态(不记顺序)计数问题很类似. 考虑如果对每个点对它算有贡献的其他点很麻烦,不知怎么下手.这个时候就想到 ...