组合变换

连接矩阵的优点是可以使用这些矩阵单独操作. 多个变换依然是一个矩阵. 连接矩阵不可交换,因为矩阵乘法不具有交换性.

X3=RX2 X2=SX1

X3=R(SX1)=(RS)X1

X3≠SRX1

逆变换:
方法1 求相乘结果的逆矩阵
方法2 求每个变换的逆矩阵,同时交换位置
也就是最后一个变换必须最先解除

M=M1M2M3
M-1=,M3-1M2-1M1-1

三维旋转

回顾二维矩阵
旋转矩阵是正交的 即R^TR=E

三维空间
二维旋转可以看成围绕Z轴的特殊旋转,因为Z轴保持不变
因此矩阵可看成

X坐标和Y坐标和二维一样。

相似的,关于X轴的旋转,矩阵如下:

同理得关于Y轴矩阵

因为Y等于Z叉乘X,矩阵稍有不同

所有这些矩阵都是正交的

我们可以把矩阵的每一行当作一个单位向量

u=xuX+yuY+zuZ
v=xvX+yvY+zvZ
w=xwX+ywY+zwZ

向量u是新坐标系的坐标轴
由此可推导出,当给定了3个正交向量,正交就意味着
互相点成为0,并且u v w 都是单位向量
所以,给定任意的这样三个向量,就可以确定标准的XYZ坐标系下的一个旋转。
通过这些向量我们可以构建一个旋转矩阵。
还有一种方式,就是旋转矩阵乘以点的形式

把点P映射到了新的坐标系中。

这是一个非常简单的三维旋转的解释。
你有一个新的坐标系,接着你在这个坐标系下得到P的点积。

CS184.1X 计算机图形学导论L3V2和L3V3(部分)的更多相关文章

  1. CS184.1X 计算机图形学导论(第五讲)

    一.观察:正交投影 1.特性:保持平行线在投影后仍然是平行的 2.一个长方体,对处在只有深度不同的位置上的同一物体来说,它的大小不会改变. 3.透视投影:平行线在远处会相交(例如铁轨) 4.glOrt ...

  2. CS184.1X 计算机图形学导论 罗德里格斯公式推导

    罗德里格斯公式推导 图1(复制自wiki) 按照教程里,以图1为例子,设k为旋转轴,v为原始向量. v以k为旋转轴旋转,旋转角度为θ,旋转后的向量为vrot. 首先我们对v进行分解,分解成一个平行于k ...

  3. CS184.1X 计算机图形学导论 第3讲L3V1

    二维空间的变换 L3V1这一课主要讲了二维空间的变换,包括平移.错切和旋转. 缩放 缩放矩阵 使用矩阵的乘法来完成缩放 缩放矩阵是一个对角矩阵,对角线上的值对应缩放倍数 错切(shear) 错切可以将 ...

  4. CS184.1X 计算机图形学导论 作业0

    1.框架下载 在网站上下载了VS2012版本的作业0的框架,由于我的电脑上的VS是2017版的,根据提示安装好C++的版本,并框架的解决方案 重定解决方案目标为2017版本. 点击运行,可以出来界面. ...

  5. CS184.1X 计算机图形学导论 HomeWork1

    最容易填写的函数就是left.输入为旋转的角度,当前的eye与up这两个三维向量 void Transform::left(float degrees, vec3& eye, vec3& ...

  6. CS184.1X 计算机图形学导论(第四讲)

    一.齐次变换 1.平移变换 变换矩阵不能包含X,Y,Z等坐标变量 如果x坐标向右平移了5个单位长度,则x~=x+5.在变换矩阵中表示的时候添加一个w坐标变量.通过加入一个w坐标,可以实现平移变换 1& ...

  7. CS184.1X 计算机图形学导论(第三讲)

    第一单元(介绍关于变换的数学知识) :基本二维变换 模型坐标系,世界坐标系 1.缩放 Scale(规模,比例) Sx表示在x方向上放大的倍数,Sy表示在y方向上放大的倍数,因此X坐标乘以Sx,Y坐标乘 ...

  8. 分享:计算机图形学期末作业!!利用WebGL的第三方库three.js写一个简单的网页版“我的世界小游戏”

    这几天一直在忙着期末考试,所以一直没有更新我的博客,今天刚把我的期末作业完成了,心情澎湃,所以晚上不管怎么样,我也要写一篇博客纪念一下我上课都没有听,还是通过强大的度娘完成了我的作业的经历.(当然作业 ...

  9. 计算机图形学 - 图形变换(opengl版)

    作业题目: 图形变换:实现一个图形绕任意直线旋转的程序. 要求:把一个三维图形绕任意一条直线旋转,需要有初始图形,和旋转后的图形,最好也可以实时控制旋转. 最少要做出绕z轴旋转. 原理:http:// ...

随机推荐

  1. SpringBoot使用注解的方式构建Elasticsearch查询语句,实现多条件的复杂查询

    背景&痛点 通过ES进行查询,如果需要新增查询条件,则每次都需要进行硬编码,然后实现对应的查询功能.这样不仅开发工作量大,而且如果有多个不同的索引对象需要进行同样的查询,则需要开发多次,代码复 ...

  2. Factory Method工厂方法模式

    定义一个用于创建对象的接口,让子类决定将哪一个类实例化.Factory Method使一个类的实例化延迟到其子类,属于创建型模式 在此模式中,工厂父类负责定义创建产品对象的公共接口,而工厂子类负责生产 ...

  3. 深入理解three.js中光源

    前言: Three.js 是一个封装了 WebGL 接口的非常好的库,简化了 WebGL 很多细节,降低了学习成本,是当前前端开发者完成3D绘图的得力工具,那么今天我就给大家详细讲解下 Three.j ...

  4. 5.Sentinel源码分析—Sentinel如何实现自适应限流?

    Sentinel源码解析系列: 1.Sentinel源码分析-FlowRuleManager加载规则做了什么? 2. Sentinel源码分析-Sentinel是如何进行流量统计的? 3. Senti ...

  5. Winform中实现ZedGraph新增自定义Y轴上下限、颜色、标题功能

    场景 Winform中实现ZedGraph的多条Y轴(附源码下载): https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details/1001322 ...

  6. 从 secondarynamenode 中恢复 namenode

    1.修改 conf/core-site.xml,增加 Xml代码 <property> <name>fs.checkpoint.period</name> < ...

  7. SpringBoot 2.0 + Nacos + Sentinel 流控规则集中存储

    前言 Sentinel 原生版本的规则管理通过API 将规则推送至客户端并直接更新到内存中,并不能直接用于生产环境.不过官方也提供了一种 Push模式,扩展读数据源ReadableDataSource ...

  8. Flink 从 0 到 1 学习 —— Flink 配置文件详解

    前面文章我们已经知道 Flink 是什么东西了,安装好 Flink 后,我们再来看下安装路径下的配置文件吧. 安装目录下主要有 flink-conf.yaml 配置.日志的配置文件.zk 配置.Fli ...

  9. DirectX12 3D 游戏开发与实战第二章内容

    矩阵代数 学习目标 理解矩阵及其相关运算的定义 探究为何能把向量和矩阵的乘法视为一种线性组合 学习单位矩阵.转置矩阵.行列式以及矩阵的逆等概念 逐步熟悉DirectXMath库中提供的关于矩阵计算的类 ...

  10. java、python、MYSQL环境安装

    JAVA的环境变量:变量值:%JAVA_HOME%\bin;%JAVA_HOME%\jre\bin;        变量名:JAVA_HOME python的环境变量:变量值:    %PY_HOME ...