组合变换

连接矩阵的优点是可以使用这些矩阵单独操作. 多个变换依然是一个矩阵. 连接矩阵不可交换,因为矩阵乘法不具有交换性.

X3=RX2 X2=SX1

X3=R(SX1)=(RS)X1

X3≠SRX1

逆变换:
方法1 求相乘结果的逆矩阵
方法2 求每个变换的逆矩阵,同时交换位置
也就是最后一个变换必须最先解除

M=M1M2M3
M-1=,M3-1M2-1M1-1

三维旋转

回顾二维矩阵
旋转矩阵是正交的 即R^TR=E

三维空间
二维旋转可以看成围绕Z轴的特殊旋转,因为Z轴保持不变
因此矩阵可看成

X坐标和Y坐标和二维一样。

相似的,关于X轴的旋转,矩阵如下:

同理得关于Y轴矩阵

因为Y等于Z叉乘X,矩阵稍有不同

所有这些矩阵都是正交的

我们可以把矩阵的每一行当作一个单位向量

u=xuX+yuY+zuZ
v=xvX+yvY+zvZ
w=xwX+ywY+zwZ

向量u是新坐标系的坐标轴
由此可推导出,当给定了3个正交向量,正交就意味着
互相点成为0,并且u v w 都是单位向量
所以,给定任意的这样三个向量,就可以确定标准的XYZ坐标系下的一个旋转。
通过这些向量我们可以构建一个旋转矩阵。
还有一种方式,就是旋转矩阵乘以点的形式

把点P映射到了新的坐标系中。

这是一个非常简单的三维旋转的解释。
你有一个新的坐标系,接着你在这个坐标系下得到P的点积。

CS184.1X 计算机图形学导论L3V2和L3V3(部分)的更多相关文章

  1. CS184.1X 计算机图形学导论(第五讲)

    一.观察:正交投影 1.特性:保持平行线在投影后仍然是平行的 2.一个长方体,对处在只有深度不同的位置上的同一物体来说,它的大小不会改变. 3.透视投影:平行线在远处会相交(例如铁轨) 4.glOrt ...

  2. CS184.1X 计算机图形学导论 罗德里格斯公式推导

    罗德里格斯公式推导 图1(复制自wiki) 按照教程里,以图1为例子,设k为旋转轴,v为原始向量. v以k为旋转轴旋转,旋转角度为θ,旋转后的向量为vrot. 首先我们对v进行分解,分解成一个平行于k ...

  3. CS184.1X 计算机图形学导论 第3讲L3V1

    二维空间的变换 L3V1这一课主要讲了二维空间的变换,包括平移.错切和旋转. 缩放 缩放矩阵 使用矩阵的乘法来完成缩放 缩放矩阵是一个对角矩阵,对角线上的值对应缩放倍数 错切(shear) 错切可以将 ...

  4. CS184.1X 计算机图形学导论 作业0

    1.框架下载 在网站上下载了VS2012版本的作业0的框架,由于我的电脑上的VS是2017版的,根据提示安装好C++的版本,并框架的解决方案 重定解决方案目标为2017版本. 点击运行,可以出来界面. ...

  5. CS184.1X 计算机图形学导论 HomeWork1

    最容易填写的函数就是left.输入为旋转的角度,当前的eye与up这两个三维向量 void Transform::left(float degrees, vec3& eye, vec3& ...

  6. CS184.1X 计算机图形学导论(第四讲)

    一.齐次变换 1.平移变换 变换矩阵不能包含X,Y,Z等坐标变量 如果x坐标向右平移了5个单位长度,则x~=x+5.在变换矩阵中表示的时候添加一个w坐标变量.通过加入一个w坐标,可以实现平移变换 1& ...

  7. CS184.1X 计算机图形学导论(第三讲)

    第一单元(介绍关于变换的数学知识) :基本二维变换 模型坐标系,世界坐标系 1.缩放 Scale(规模,比例) Sx表示在x方向上放大的倍数,Sy表示在y方向上放大的倍数,因此X坐标乘以Sx,Y坐标乘 ...

  8. 分享:计算机图形学期末作业!!利用WebGL的第三方库three.js写一个简单的网页版“我的世界小游戏”

    这几天一直在忙着期末考试,所以一直没有更新我的博客,今天刚把我的期末作业完成了,心情澎湃,所以晚上不管怎么样,我也要写一篇博客纪念一下我上课都没有听,还是通过强大的度娘完成了我的作业的经历.(当然作业 ...

  9. 计算机图形学 - 图形变换(opengl版)

    作业题目: 图形变换:实现一个图形绕任意直线旋转的程序. 要求:把一个三维图形绕任意一条直线旋转,需要有初始图形,和旋转后的图形,最好也可以实时控制旋转. 最少要做出绕z轴旋转. 原理:http:// ...

随机推荐

  1. FreeSql (十六)分页查询

    IFreeSql fsql = new FreeSql.FreeSqlBuilder() .UseConnectionString(FreeSql.DataType.MySql, "Data ...

  2. getMeasuredHeight()与getHeight() 以及MeasureSpec.getSize()

    getMeasuredHeight()返回的是原始测量高度,与屏幕无关,getHeight()返回的是在屏幕上显示的高度.实际上在当屏幕可以包裹内容的时候,他们的值是相等的,只有当view超出屏幕后, ...

  3. AtomicInteger 一个提供原子操作的Integer类

    转自:http://www.blogjava.net/freeman1984/archive/2011/10/17/361402.html AtomicInteger,一个提供原子操作的Integer ...

  4. PHP 错误:Warning: Cannot modify header information - headers already sent by ...

    PHP初学者容易遇到的错误:Warning: Cannot modify header information - headers already sent by ...: 通常是由不正确使用 hea ...

  5. FaceBook快捷登入

    关于集成FaceBook快捷登入,我上回做了个最简单的版本,所有Web端通用,在这边共享下,有更好的解决方案的,麻烦评论留个地址,有不妥之处请指正. 首先,我们先加载Facebook的Js windo ...

  6. maven下载jar包源码配置

    两个依赖,就想下mail的源码包,因该怎么 <dependencies> <dependency> <groupId>javax.mail</groupId& ...

  7. 带你入门SpringCloud统一配置 | SpringCloud Config

    前言 在微服务中众多服务的配置必然会出现相同的配置,如果配置发生变化需要修改,一个个去修改然后重启项目的方案是绝对不可取的.而 SpringCloud Config 就是一个可以帮助你实现统一配置选择 ...

  8. SpringCloud微服务笔记-Nginx实现网关反向代理

    背景 当前在SpringCloud微服务架构下,网关作为服务的入口尤为重要,一旦网关发生单点故障会导致整个服务集群瘫痪,为了保证网关的高可用可以通过Nginx的反向代理功能实现网关的高可用. 项目源码 ...

  9. 树莓派3安装ros

    树莓派3上面安装ros总结参考wiki和诸多博客安装ros仍然遇到了很多问题,重装了好几遍才成功,为了自己和其他人以后再安装ros时,不在重蹈覆辙.1.准备和说明树莓派3,安装系统Raspbian j ...

  10. Docker下实战zabbix三部曲之三:自定义监控项

    通过上一章<Docker下实战zabbix三部曲之二:监控其他机器>的实战,我们了解了对机器的监控是通过在机器上安装zabbix agent来完成的,zabbix agent连接上zabb ...