CS184.1X 计算机图形学导论L3V2和L3V3(部分)
组合变换
连接矩阵的优点是可以使用这些矩阵单独操作. 多个变换依然是一个矩阵. 连接矩阵不可交换,因为矩阵乘法不具有交换性.
X3=RX2 X2=SX1
X3=R(SX1)=(RS)X1
X3≠SRX1
逆变换:
方法1 求相乘结果的逆矩阵
方法2 求每个变换的逆矩阵,同时交换位置
也就是最后一个变换必须最先解除
M=M1M2M3
M-1=,M3-1M2-1M1-1
三维旋转
回顾二维矩阵
旋转矩阵是正交的 即R^TR=E
三维空间
二维旋转可以看成围绕Z轴的特殊旋转,因为Z轴保持不变
因此矩阵可看成

X坐标和Y坐标和二维一样。
相似的,关于X轴的旋转,矩阵如下:

同理得关于Y轴矩阵
因为Y等于Z叉乘X,矩阵稍有不同

所有这些矩阵都是正交的
我们可以把矩阵的每一行当作一个单位向量

u=xuX+yuY+zuZ
v=xvX+yvY+zvZ
w=xwX+ywY+zwZ
向量u是新坐标系的坐标轴
由此可推导出,当给定了3个正交向量,正交就意味着
互相点成为0,并且u v w 都是单位向量
所以,给定任意的这样三个向量,就可以确定标准的XYZ坐标系下的一个旋转。
通过这些向量我们可以构建一个旋转矩阵。
还有一种方式,就是旋转矩阵乘以点的形式
把点P映射到了新的坐标系中。

这是一个非常简单的三维旋转的解释。
你有一个新的坐标系,接着你在这个坐标系下得到P的点积。
CS184.1X 计算机图形学导论L3V2和L3V3(部分)的更多相关文章
- CS184.1X 计算机图形学导论(第五讲)
一.观察:正交投影 1.特性:保持平行线在投影后仍然是平行的 2.一个长方体,对处在只有深度不同的位置上的同一物体来说,它的大小不会改变. 3.透视投影:平行线在远处会相交(例如铁轨) 4.glOrt ...
- CS184.1X 计算机图形学导论 罗德里格斯公式推导
罗德里格斯公式推导 图1(复制自wiki) 按照教程里,以图1为例子,设k为旋转轴,v为原始向量. v以k为旋转轴旋转,旋转角度为θ,旋转后的向量为vrot. 首先我们对v进行分解,分解成一个平行于k ...
- CS184.1X 计算机图形学导论 第3讲L3V1
二维空间的变换 L3V1这一课主要讲了二维空间的变换,包括平移.错切和旋转. 缩放 缩放矩阵 使用矩阵的乘法来完成缩放 缩放矩阵是一个对角矩阵,对角线上的值对应缩放倍数 错切(shear) 错切可以将 ...
- CS184.1X 计算机图形学导论 作业0
1.框架下载 在网站上下载了VS2012版本的作业0的框架,由于我的电脑上的VS是2017版的,根据提示安装好C++的版本,并框架的解决方案 重定解决方案目标为2017版本. 点击运行,可以出来界面. ...
- CS184.1X 计算机图形学导论 HomeWork1
最容易填写的函数就是left.输入为旋转的角度,当前的eye与up这两个三维向量 void Transform::left(float degrees, vec3& eye, vec3& ...
- CS184.1X 计算机图形学导论(第四讲)
一.齐次变换 1.平移变换 变换矩阵不能包含X,Y,Z等坐标变量 如果x坐标向右平移了5个单位长度,则x~=x+5.在变换矩阵中表示的时候添加一个w坐标变量.通过加入一个w坐标,可以实现平移变换 1& ...
- CS184.1X 计算机图形学导论(第三讲)
第一单元(介绍关于变换的数学知识) :基本二维变换 模型坐标系,世界坐标系 1.缩放 Scale(规模,比例) Sx表示在x方向上放大的倍数,Sy表示在y方向上放大的倍数,因此X坐标乘以Sx,Y坐标乘 ...
- 分享:计算机图形学期末作业!!利用WebGL的第三方库three.js写一个简单的网页版“我的世界小游戏”
这几天一直在忙着期末考试,所以一直没有更新我的博客,今天刚把我的期末作业完成了,心情澎湃,所以晚上不管怎么样,我也要写一篇博客纪念一下我上课都没有听,还是通过强大的度娘完成了我的作业的经历.(当然作业 ...
- 计算机图形学 - 图形变换(opengl版)
作业题目: 图形变换:实现一个图形绕任意直线旋转的程序. 要求:把一个三维图形绕任意一条直线旋转,需要有初始图形,和旋转后的图形,最好也可以实时控制旋转. 最少要做出绕z轴旋转. 原理:http:// ...
随机推荐
- SpringBoot使用注解的方式构建Elasticsearch查询语句,实现多条件的复杂查询
背景&痛点 通过ES进行查询,如果需要新增查询条件,则每次都需要进行硬编码,然后实现对应的查询功能.这样不仅开发工作量大,而且如果有多个不同的索引对象需要进行同样的查询,则需要开发多次,代码复 ...
- Factory Method工厂方法模式
定义一个用于创建对象的接口,让子类决定将哪一个类实例化.Factory Method使一个类的实例化延迟到其子类,属于创建型模式 在此模式中,工厂父类负责定义创建产品对象的公共接口,而工厂子类负责生产 ...
- 深入理解three.js中光源
前言: Three.js 是一个封装了 WebGL 接口的非常好的库,简化了 WebGL 很多细节,降低了学习成本,是当前前端开发者完成3D绘图的得力工具,那么今天我就给大家详细讲解下 Three.j ...
- 5.Sentinel源码分析—Sentinel如何实现自适应限流?
Sentinel源码解析系列: 1.Sentinel源码分析-FlowRuleManager加载规则做了什么? 2. Sentinel源码分析-Sentinel是如何进行流量统计的? 3. Senti ...
- Winform中实现ZedGraph新增自定义Y轴上下限、颜色、标题功能
场景 Winform中实现ZedGraph的多条Y轴(附源码下载): https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details/1001322 ...
- 从 secondarynamenode 中恢复 namenode
1.修改 conf/core-site.xml,增加 Xml代码 <property> <name>fs.checkpoint.period</name> < ...
- SpringBoot 2.0 + Nacos + Sentinel 流控规则集中存储
前言 Sentinel 原生版本的规则管理通过API 将规则推送至客户端并直接更新到内存中,并不能直接用于生产环境.不过官方也提供了一种 Push模式,扩展读数据源ReadableDataSource ...
- Flink 从 0 到 1 学习 —— Flink 配置文件详解
前面文章我们已经知道 Flink 是什么东西了,安装好 Flink 后,我们再来看下安装路径下的配置文件吧. 安装目录下主要有 flink-conf.yaml 配置.日志的配置文件.zk 配置.Fli ...
- DirectX12 3D 游戏开发与实战第二章内容
矩阵代数 学习目标 理解矩阵及其相关运算的定义 探究为何能把向量和矩阵的乘法视为一种线性组合 学习单位矩阵.转置矩阵.行列式以及矩阵的逆等概念 逐步熟悉DirectXMath库中提供的关于矩阵计算的类 ...
- java、python、MYSQL环境安装
JAVA的环境变量:变量值:%JAVA_HOME%\bin;%JAVA_HOME%\jre\bin; 变量名:JAVA_HOME python的环境变量:变量值: %PY_HOME ...