Leetcode之深度优先搜索&回溯专题-638. 大礼包(Shopping Offers)

深度优先搜索的解题详细介绍,点击


在LeetCode商店中, 有许多在售的物品。

然而,也有一些大礼包,每个大礼包以优惠的价格捆绑销售一组物品。

现给定每个物品的价格,每个大礼包包含物品的清单,以及待购物品清单。请输出确切完成待购清单的最低花费。

每个大礼包的由一个数组中的一组数据描述,最后一个数字代表大礼包的价格,其他数字分别表示内含的其他种类物品的数量。

任意大礼包可无限次购买。

示例 1:

输入: [2,5], [[3,0,5],[1,2,10]], [3,2]
输出: 14
解释:
有A和B两种物品,价格分别为¥2和¥5。
大礼包1,你可以以¥5的价格购买3A和0B。
大礼包2, 你可以以¥10的价格购买1A和2B。
你需要购买3个A和2个B, 所以你付了¥10购买了1A和2B(大礼包2),以及¥4购买2A。
示例 2: 输入: [2,3,4], [[1,1,0,4],[2,2,1,9]], [1,2,1]
输出: 11
解释:
A,B,C的价格分别为¥2,¥3,¥4.
你可以用¥4购买1A和1B,也可以用¥9购买2A,2B和1C。
你需要买1A,2B和1C,所以你付了¥4买了1A和1B(大礼包1),以及¥3购买1B, ¥4购买1C。
你不可以购买超出待购清单的物品,尽管购买大礼包2更加便宜。
说明: 最多6种物品, 100种大礼包。
每种物品,你最多只需要购买6个。
你不可以购买超出待购清单的物品,即使更便宜。

分析:

给定N个商品,给定M个长度为N+1的礼包,并给定长度为N的List来存储每个商品需要几个,求怎样购买价格最低。

例子看示例1.

这个问题可以转化为:

1、先求出我最多可以买几个该礼包?

2、循环 0-最大购买数量 次,即购买该礼包 0次到最大购买次数个

  举个例子,A礼包我最多可以买2个,那么我DFS进入到以下几个步骤:

  •   购买0个A礼包 -> 购买B礼包
  •   购买1个A礼包 -> 购买B礼包
  •   购买2个A礼包 -> 购买B礼包

3、循环到礼包列表的最末端后,检查有哪些商品是目前还缺的,把缺的商品,以其单价购买。

4、最后再计算总价,求出最小值。

AC代码:

class Solution {
int ans = Integer.MAX_VALUE;
public int shoppingOffers(List<Integer> price, List<List<Integer>> special, List<Integer> needs) {
if(price.size()==0 || price==null) return 0;
dfs(price,special,needs,0,0);
return ans;
}
public void dfs(List<Integer> price,List<List<Integer>> special,List<Integer> needs,int step,int money){
if(step>=special.size()){
for (int i = 0; i < needs.size(); i++) {
money += needs.get(i)*price.get(i);
}
ans = Math.min(ans, money);
return;
} List<Integer> pack = special.get(step);
int value = pack.get(pack.size()-1);
int maxNum = Integer.MAX_VALUE;
for(int i=0;i<needs.size();i++){
if(pack.get(i)!=0){
int temp = needs.get(i)/pack.get(i);
maxNum = Math.min(maxNum, temp);
}
}
for(int i=0;i<=maxNum;i++){
List<Integer> temp = new ArrayList<>(needs);
for(int j=0;j<needs.size();j++){
needs.set(j, needs.get(j)-i*pack.get(j));
}
int cost = i*value;
if(money+cost<ans){
dfs(price,special,needs,step+1,money+cost);
}
needs = new ArrayList<>(temp);
} }
}

Leetcode之深度优先搜索&回溯专题-638. 大礼包(Shopping Offers)的更多相关文章

  1. Leetcode之深度优先搜索&回溯专题-491. 递增子序列(Increasing Subsequences)

    Leetcode之深度优先搜索&回溯专题-491. 递增子序列(Increasing Subsequences) 深度优先搜索的解题详细介绍,点击 给定一个整型数组, 你的任务是找到所有该数组 ...

  2. Leetcode之深度优先搜索&回溯专题-980. 不同路径 III(Unique Paths III)

    Leetcode之深度优先搜索&回溯专题-980. 不同路径 III(Unique Paths III) 深度优先搜索的解题详细介绍,点击 在二维网格 grid 上,有 4 种类型的方格: 1 ...

  3. Leetcode之深度优先搜索&回溯专题-679. 24 点游戏(24 Game)

    Leetcode之深度优先搜索&回溯专题-679. 24 点游戏(24 Game) 深度优先搜索的解题详细介绍,点击 你有 4 张写有 1 到 9 数字的牌.你需要判断是否能通过 *,/,+, ...

  4. Leetcode之深度优先搜索(DFS)专题-129. 求根到叶子节点数字之和(Sum Root to Leaf Numbers)

    Leetcode之深度优先搜索(DFS)专题-129. 求根到叶子节点数字之和(Sum Root to Leaf Numbers) 深度优先搜索的解题详细介绍,点击 给定一个二叉树,它的每个结点都存放 ...

  5. Leetcode之深度优先搜索(DFS)专题-199. 二叉树的右视图(Binary Tree Right Side View)

    Leetcode之深度优先搜索(DFS)专题-199. 二叉树的右视图(Binary Tree Right Side View) 深度优先搜索的解题详细介绍,点击 给定一棵二叉树,想象自己站在它的右侧 ...

  6. Leetcode之深度优先搜索(DFS)专题-559. N叉树的最大深度(Maximum Depth of N-ary Tree)

    Leetcode之深度优先搜索(DFS)专题-559. N叉树的最大深度(Maximum Depth of N-ary Tree) 深度优先搜索的解题详细介绍,点击 给定一个 N 叉树,找到其最大深度 ...

  7. Leetcode之深度优先搜索(DFS)专题-1020. 飞地的数量(Number of Enclaves)

    Leetcode之深度优先搜索(DFS)专题-1020. 飞地的数量(Number of Enclaves) 深度优先搜索的解题详细介绍,点击 给出一个二维数组 A,每个单元格为 0(代表海)或 1( ...

  8. Leetcode之深度优先搜索(DFS)专题-690. 员工的重要性(Employee Importance)

    Leetcode之深度优先搜索(DFS)专题-690. 员工的重要性(Employee Importance) 深度优先搜索的解题详细介绍,点击 给定一个保存员工信息的数据结构,它包含了员工唯一的id ...

  9. Leetcode之深度优先搜索(DFS)专题-733. 图像渲染(Flood Fill)

    Leetcode之深度优先搜索(DFS)专题-733. 图像渲染(Flood Fill) 深度优先搜索的解题详细介绍,点击 有一幅以二维整数数组表示的图画,每一个整数表示该图画的像素值大小,数值在 0 ...

随机推荐

  1. 第三章 JavaScript操作Dom对象

    常用的方法: 1.访问节点: 通过Document.getElementByXXX()获得一个指定节点-->再通过以下属性节点访问节点:第一部分:节点属性a:parentNode 返回节点的父节 ...

  2. HTTP_4_返回结果的HTTP状态码

    状态码:返回请求结果. 状态码种类繁多,以下总结常用的状态码:     类别 信息性状态码 1XX 服务器接受请求,继续处理       成功状态码 200 OK 请求处理成功,并返回资源(响应报文中 ...

  3. 灵活使用Maven Profile

    项目中一直应用Maven的profile特性解决不同环境的部署问题.最近在尝试解决本地调试环境的时候碰到一些问题,顺便仔细研究了一下.因为项目仍然在用普通SpringMVC架构,没有切换到Spring ...

  4. Linux平台 Oracle 19c RAC安装Part2:GI配置

    三.GI(Grid Infrastructure)安装 3.1 解压GI的安装包 3.2 安装配置Xmanager软件 3.3 共享存储LUN的赋权 3.4 使用Xmanager图形化界面配置GI 3 ...

  5. 【iOS】UIAlertView 点击跳转事件

    iOS 开发中,UIAlertView 经常用到.这里记录下曾用到的点击跳转事件. UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@& ...

  6. Core CLR 自定义的Host官方推荐的一种形式(第一种)

    .Net Core CLR提供两种Host API访问 托管代码的形式,按照微软官方的说法,一种是通过CoreClr.DLL来直接调用托管生成的DLL程序集,另外一种是通过CoreClr里面的C导出函 ...

  7. RGB颜色 三者都是0为黑色而255是白色 解释

    问题: RGB颜色 都是0为黑色而255是白色 与日常生活的黑色白色差距怎么那么大,(与物理学中的黑色吸收光是否相悖)而且为什么要这样定义呢? 链接:https://www.zhihu.com/que ...

  8. C#中属性的解析

    一.域的概念 C#中域是指成员变量和方法,在OOP编程中(面向对象编程)我们要求用户只知道类是干什么的,而不许知道如何完成的,或者说不允许访问类的内部,对于有必要在类外可见的域,我们用属性来表达,所以 ...

  9. mysql是如何实现事务隔离以及MVCC详解

    提到事务,你肯定会想到ACID(Atomicity.Consistency.Isolation.Durability,即原子性.一致性.隔离性.持久性),我们就来说说其中I,也就是"隔离性& ...

  10. python3 编译安装

    前言: Linux下大部分系统默认自带python2.x的版本,最常见的是python2.6或python2.7版本,默认的python被系统很多程序所依赖,比如centos下的yum就是python ...