树的重心

何谓重心

树的重心:找到一个点,其所有的子树中最大的子树节点数最少,那么这个点就是这棵树的重心,删去重心后,生成的多棵树尽可能平衡。

树的重心可以通过简单的两次搜索求出,第一遍搜索求出每个结点的子结点数量son[u],第二遍搜索找出使max{son[u],n-son[u]-1}最小的结点。

实际上这两步操作可以在一次遍历中解决。对结点u的每一个儿子v,递归的处理v,求出son[v],然后判断是否是结点数最多的子树,处理完所有子结点后,判断u是否为重心。

以牛客的一道题:A病毒感染:https://www.nowcoder.com/acm/contest/214/A

//#pragma GCC optimize(3)
//#pragma comment(linker, "/STACK:102400000,102400000") //c++
// #pragma GCC diagnostic error "-std=c++11"
// #pragma comment(linker, "/stack:200000000")
// #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
// #pragma GCC optimize("-fdelete-null-pointer-checks,inline-functions-called-once,-funsafe-loop-optimizations,-fexpensive-optimizations,-foptimize-sibling-calls,-ftree-switch-conversion,-finline-small-functions,inline-small-functions,-frerun-cse-after-loop,-fhoist-adjacent-loads,-findirect-inlining,-freorder-functions,no-stack-protector,-fpartial-inlining,-fsched-interblock,-fcse-follow-jumps,-fcse-skip-blocks,-falign-functions,-fstrict-overflow,-fstrict-aliasing,-fschedule-insns2,-ftree-tail-merge,inline-functions,-fschedule-insns,-freorder-blocks,-fwhole-program,-funroll-loops,-fthread-jumps,-fcrossjumping,-fcaller-saves,-fdevirtualize,-falign-labels,-falign-loops,-falign-jumps,unroll-loops,-fsched-spec,-ffast-math,Ofast,inline,-fgcse,-fgcse-lm,-fipa-sra,-ftree-pre,-ftree-vrp,-fpeephole2",3) #include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <cassert> using namespace std;
#define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue typedef long long ll;
typedef unsigned long long ull;
//typedef __int128 bll;
typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii;
typedef pair<int,pii> p3; //priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
//#define endl '\n' #define OKC ios::sync_with_stdio(false);cin.tie(0)
#define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行
#define REP(i , j , k) for(int i = j ; i < k ; ++i)
#define max3(a,b,c) max(max(a,b), c);
//priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFF; //
const ll nmos = 0x80000000; //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f; //
const int mod = 1e9+;
const double esp = 1e-;
const double PI=acos(-1.0);
const double PHI=0.61803399; //黄金分割点
const double tPHI=0.38196601; template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
} /*-----------------------showtime----------------------*/
int minn = inf;
int n,m;
const int maxn = ;
vector<int>mp[maxn];
int dp[maxn],d[maxn];
void dfs(int u,int fa){
dp[u] = ;
d[u] = ;
for(int i=; i<mp[u].size(); i++){
int v = mp[u][i];
if(v == fa)continue;
dfs(v, u);
dp[u] += dp[v];
d[u] = max(d[u], dp[v]);
} d[u] = max(d[u], n - dp[u]);
minn = min(minn, d[u]);
}
int main(){
scanf("%d%d", &n, &m);
for(int i=; i<=m; i++){
int u,v;
scanf("%d%d", &u, &v);
mp[u].pb(v); mp[v].pb(u);
}
dfs(, -);
// debug(minn);
for(int i=; i<=n; i++){
if(d[i] == minn){printf("%d ", i);}
}
printf("\n");
return ;
}

求树的重心 DFS的更多相关文章

  1. 求树的重心(POJ1655)

    题意:给出一颗n(n<=2000)个结点的树,删除其中的一个结点,会形成一棵树,或者多棵树,定义删除任意一个结点的平衡度为最大的那棵树的结点个数,问删除哪个结点后,可以让平衡度最小,即求树的重心 ...

  2. POJ 1655 Balancing Act (求树的重心)

    求树的重心,直接当模板吧.先看POJ题目就知道重心什么意思了... 重心:删除该节点后最大连通块的节点数目最小 #include<cstdio> #include<cstring&g ...

  3. POJ 1655 求树的重心

    POJ 1655 [题目链接]POJ 1655 [题目类型]求树的重心 &题意: 定义平衡数为去掉一个点其最大子树的结点个数,求给定树的最小平衡数和对应要删的点.其实就是求树的重心,找到一个点 ...

  4. 洛谷P1395 会议(CODEVS.3029.设置位置)(求树的重心)

    To 洛谷.1395 会议 To CODEVS.3029 设置位置 题目描述 有一个村庄居住着n个村民,有n-1条路径使得这n个村民的家联通,每条路径的长度都为1.现在村长希望在某个村民家中召开一场会 ...

  5. POJ 1655 Balancing Act(求树的重心--树形DP)

    题意:求树的重心的编号以及重心删除后得到的最大子树的节点个数size,假设size同样就选取编号最小的. 思路:随便选一个点把无根图转化成有根图.dfs一遍就可以dp出答案 //1348K 125MS ...

  6. poj 1655 Balancing Act 求树的重心【树形dp】

    poj 1655 Balancing Act 题意:求树的重心且编号数最小 一棵树的重心是指一个结点u,去掉它后剩下的子树结点数最少. (图片来源: PatrickZhou 感谢博主) 看上面的图就好 ...

  7. poj3107 求树的重心(&& poj1655 同样求树的重心)

    题目链接:http://poj.org/problem?id=3107 求树的重心,所谓树的重心就是:在无根树转换为有根树的过程中,去掉根节点之后,剩下的树的最大结点最小,该点即为重心. 剩下的数的 ...

  8. 求树的重心 poj 1655

    题目链接:https://vjudge.net/problem/POJ-1655 这个就是找树的重心,树的重心就是树里面找一个点,使得以这个点为树根的所有的子树中最大的子树节点数最小.题目应该讲的比较 ...

  9. poj3107 Godfather 求树的重心

    Description Last years Chicago was full of gangster fights and strange murders. The chief of the pol ...

随机推荐

  1. 2019年一半已过,这些大前端技术你都GET了吗?- 上篇

    一晃眼2019年已过大半,年初信誓旦旦要学习新技能的小伙伴们立的flag都完成的怎样了?2019年对于大前端技术领域而言变化不算太大,目前三大技术框架日趋成熟,短期内不大可能出现颠覆性的前端框架(内心 ...

  2. http://regex.alf.nu/ 非标准答案

    Plain strings (207)                             foo Anchors (206)                                   ...

  3. python log 设置

    # -*- coding: utf-8 -*- import loggingfrom logging.handlers import TimedRotatingFileHandler  # 按时间处理 ...

  4. java支付宝app支付-代码实现

    1.我们需要在支付宝商户平台配置好,取到四个参数如下(这是支付宝官方配置地址):https://www.cnblogs.com/fuzongle/p/10217144.html 合作身份者ID:123 ...

  5. 基于 kubeadm 部署单控制平面的 k8s 集群

    单控制平面不符合 HA 要求,但用于开发/测试环境不会有任何问题,如果资源足够的话(10台以上服务器,3台用于APIserver.3台用于 etcd 存储.至少3台用于工作节点.1台作为负载均衡),可 ...

  6. (十三)c#Winform自定义控件-导航菜单

    前提 入行已经7,8年了,一直想做一套漂亮点的自定义控件,于是就有了本系列文章. 开源地址:https://gitee.com/kwwwvagaa/net_winform_custom_control ...

  7. EMCAscript6随心所记

    es6的支持情况http://kangax.github.io/compat-table/es6/ 1.let命令 基本用法 ES6新增了let命令,用来声明变量.它的用法类似于var,但是所声明的变 ...

  8. File Compression and Archiving in linux (linux 中文件的归档)

    1. Compressing Files at the Shell Prompt Red Hat Enterprise Linux provides the bzip2, gzip, and zip ...

  9. Debian下Hadoop 3.12 集群搭建

    Debian系统配置 我这里在Vmware里面虚拟4个Debian系统,一个master,三个solver.hostname分别是master.solver1.solver2.solver3.对了,下 ...

  10. Mysql主从复制原理及搭建

    ## Mysql主从复制原理 主从复制是指一台服务器充当主数据库服务器,另一台或多台服务器充当从数据库服务器,主服务器中的数据自动复制到从服务器之中.对于多级复制,数据库服务器即可充当主机,也可充当从 ...