numba,让python速度提升百倍
python由于它动态解释性语言的特性,跑起代码来相比java、c++要慢很多,尤其在做科学计算的时候,十亿百亿级别的运算,让python的这种劣势更加凸显。
办法永远比困难多,numba就是解决python慢的一大利器,可以让python的运行速度提升上百倍!
什么是numba?
numba是一款可以将python函数编译为机器代码的JIT编译器,经过numba编译的python代码(仅限数组运算),其运行速度可以接近C或FORTRAN语言。
python之所以慢,是因为它是靠CPython编译的,numba的作用是给python换一种编译器。
python、c、numba三种编译器速度对比
使用numba非常简单,只需要将numba装饰器应用到python函数中,无需改动原本的python代码,numba会自动完成剩余的工作。
import numpy as np
import numba
from numba import jit @jit(nopython=True) # jit,numba装饰器中的一种
def go_fast(a): # 首次调用时,函数被编译为机器代码
trace = 0
# 假设输入变量是numpy数组
for i in range(a.shape[0]): # Numba 擅长处理循环
trace += np.tanh(a[i, i])
return a + trace
以上代码是一个python函数,用以计算numpy数组各个数值的双曲正切值,我们使用了numba装饰器,它将这个python函数编译为等效的机器代码,可以大大减少运行时间。
numba适合科学计算
numpy是为面向numpy数组的计算任务而设计的。
在面向数组的计算任务中,数据并行性对于像GPU这样的加速器是很自然的。Numba了解NumPy数组类型,并使用它们生成高效的编译代码,用于在GPU或多核CPU上执行。特殊装饰器还可以创建函数,像numpy函数那样在numpy数组上广播。
什么情况下使用numba呢?
- 使用numpy数组做大量科学计算时
- 使用for循环时
学习使用numba
第一步:导入numpy、numba及其编译器
import numpy as np
import numba
from numba import jit
第二步:传入numba装饰器jit,编写函数
# 传入jit,numba装饰器中的一种
@jit(nopython=True)
def go_fast(a): # 首次调用时,函数被编译为机器代码
trace = 0
# 假设输入变量是numpy数组
for i in range(a.shape[0]): # Numba 擅长处理循环
trace += np.tanh(a[i, i]) # numba喜欢numpy函数
return a + trace # numba喜欢numpy广播
nopython = True选项要求完全编译该函数(以便完全删除Python解释器调用),否则会引发异常。这些异常通常表示函数中需要修改的位置,以实现优于Python的性能。强烈建议您始终使用nopython = True。
# 因为函数要求传入的参数是nunpy数组
x = np.arange(100).reshape(10, 10)
# 执行函数
go_fast(x)
第四步:经numba加速的函数执行时间
% timeit go_fast(x)
输出:3.63 µs ± 156 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
第五步:不经numba加速的函数执行时间
def go_fast(a): # 首次调用时,函数被编译为机器代码
trace = 0
# 假设输入变量是numpy数组
for i in range(a.shape[0]): # Numba 擅长处理循环
trace += np.tanh(a[i, i]) # numba喜欢numpy函数
return a + trace # numba喜欢numpy广播 x = np.arange(100).reshape(10, 10)
%timeit go_fast(x)
输出:136 µs ± 1.09 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
结论:
在numba加速下,代码执行时间为3.63微秒/循环。不经过numba加速,代码执行时间为136微秒/循环,两者相比,前者快了40倍。
numba让python飞起来
前面已经对比了numba使用前后,python代码速度提升了40倍,但这还不是最快的。
这次,我们不使用numpy数组,仅用for循环,看看nunba对for循环到底有多钟爱!
# 不使用numba的情况
def t():
x = 0
for i in np.arange(5000):
x += i
return x
%timeit(t())
输出:408 µs ± 9.73 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
# 使用numba的情况
@jit(nopython=True)
def t():
x = 0
for i in np.arange(5000):
x += i
return x
%timeit(t())
输出:1.57 µs ± 53.8 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
使用numba前后分别是408微秒/循环、1.57微秒/循环,速度整整提升了200多倍!
结语
numba对python代码运行速度有巨大的提升,这极大的促进了大数据时代的python数据分析能力,对数据科学工作者来说,这真是一个lucky tool !
当然numba不会对numpy和for循环以外的python代码有很大帮助,你不要指望numba可以帮你加快从数据库取数,这点它真的做不到哈。
如果大家想要学习更多的python数据分析知识,请关注我的公众号:pydatas
回复:数据分析,可领取《利用python进行数据分析 第二版》电子书
numba,让python速度提升百倍的更多相关文章
- 使用Apache Spark 对 mysql 调优 查询速度提升10倍以上
在这篇文章中我们将讨论如何利用 Apache Spark 来提升 MySQL 的查询性能. 介绍 在我的前一篇文章Apache Spark with MySQL 中介绍了如何利用 Apache Spa ...
- 如何将 iOS 工程打包速度提升十倍以上
如何将 iOS 工程打包速度提升十倍以上 过慢的编译速度有非常明显的副作用.一方面,程序员在等待打包的过程中可能会分心,比如刷刷朋友圈,看条新闻等等.这种认知上下文的切换会带来很多隐形的时间浪费. ...
- 阿里云maven仓库地址,速度提升100倍
参照:https://www.cnblogs.com/xxt19970908/p/6685777.html maven仓库用过的人都知道,国内有多么的悲催.还好有比较好用的镜像可以使用,尽快记录下来. ...
- 多伦多大学&NVIDIA最新成果:图像标注速度提升10倍!
图像标注速度提升10倍! 这是多伦多大学与英伟达联合公布的一项最新研究:Curve-GCN的应用结果. Curve-GCN是一种高效交互式图像标注方法,其性能优于Polygon-RNN++.在自动模式 ...
- Elasticsearch聚合优化 | 聚合速度提升5倍
https://blog.csdn.net/laoyang360/article/details/79253294 1.聚合为什么慢?大多数时候对单个字段的聚合查询还是非常快的, 但是当需要同时聚合多 ...
- 从 Webpack 到 Snowpack, 编译速度提升十倍以上——TRPG Engine迁移小记
动机 TRPG Engine经过长久以来的迭代,项目已经显得非常臃肿了.数分钟的全量编译, 每次按下保存都会触发一次10s到1m不等的增量编译让我苦不堪言, 庞大的依赖使其每一次编译都会涉及很多文件和 ...
- 使用 Apache Spark 让 MySQL 查询速度提升 10 倍以上
转: https://coyee.com/article/11012-how-apache-spark-makes-your-slow-mysql-queries-10x-faster-or-more ...
- 数据库 | SQL 诊断优化套路包,套路用的对,速度升百倍
本文出自头条号老王谈运维,转载请说明出处. 前言 在DBA的日常工作中,调整个别性能较差的SQL语句是一项富有挑战性的工作.面对慢SQL,一些DBA会心烦,会沮丧,会束手无措,也会沉着冷静.斗智斗勇! ...
- Java动态编译优化——提升编译速度(N倍)
一.前言 最近一直在研究Java8 的动态编译, 并且也被ZipFileIndex$Entry 内存泄漏所困扰,在无意中,看到一个第三方插件的动态编译.并且编译速度是原来的2-3倍.原本打算直接用这个 ...
随机推荐
- 自定义SSL证书实现单双向ssl认证记录
自定义SSL证书: 1.ca证书 #openssl genrsa -out ca.key 2048 #openssl req -new -key ca.key -out ca.csr #openssl ...
- 【Phabricator】教科书一般的Phabricator安装教程(配合官方文档并带有踩坑解决方案)
随着一声惊雷和滂沱的大雨,我的Phabricator页面终于在我的学生机上跑了起来. 想起在这五个小时内踩过的坑甚如大学隔壁炮王干过的妹子,心里的成就感不禁油然而生. 接下来,我将和大家分享一下本人在 ...
- 洛谷 P1463、POI2002、HAOI2007 反素数
题意: 求最小的$x\in[1,N]$,使得$x$为$g(x)$最大的数 中最小的一个. 分析: 1.$x$不会有超过$10$个不同质因子.理由:$2 \times 3\times 5...\time ...
- Android总结之打开手机相册获取图片
上一篇,总结了如何打开照相机获取图片,详情请看>>>> 这篇将总结如何打开手机存储(相册)来获取手机上的图片. 打开相册 在需要这个功能的类中,我们可以自定义一个方法openA ...
- [leetcode] 113. Path Sum II (Medium)
原题链接 子母题 112 Path Sum 跟112多了一点就是保存路径 依然用dfs,多了两个vector保存路径 Runtime: 16 ms, faster than 16.09% of C++ ...
- SpringBoot入门(一):从HelloWorld开始
从0开始创建springBoot项目,话不多说,跟着我一步一步来就行了. 1.新建项目 1) 创建新项目,选择project, 点点点就好了 2) Spring Initializr——>选择 ...
- Java--UTF-8
UTF-8(8-bit Unicode Transformation Format)是一种针对Unicode的可变长度字符编码,又称万国码.由Ken Thompson于1992年创建.现在已经标准化为 ...
- mount命令中offset参数的意义
mount命令中offset参数的意义 感觉好久没有来写东西了,最近一直忙个不停,今天也一样,总感觉时间不够用,唉,这里来临时总结一下工作中的一点小收获吧.今天要说的是我们常用的解压IM ...
- python取数字、字母
python取数字.字母 有一串字符串“lxa7YzU”,其中有大写字母.小写字母和数字,现编写一脚本使得实现以下功能: 将这串字符串中的数字.大写字母.小写字母分别取出来并进行分类. 脚本如下所示: ...
- 嵌套&匿名&高阶函数
嵌套&匿名&高阶函数 嵌套函数 函数可以嵌套定义并调用函数 name = "小明" def change(): name = "小明,你好" d ...