信号量

信号量(sem)在操作系统中是一种实现系统中任务与任务、任务与中断间同步或者临界资源互斥保护的机制。在多任务系统中,各任务之间常需要同步或互斥,信号量就可以为用户提供这方面的支持。

抽象来说,信号量是一个非负整数,每当信号量被获取(pend)时,该整数会减一,当该整数的值为 0 时,表示信号量处于无效状态,将无法被再次获取,所有试图获取它的任务将进入阻塞态。通常一个信号量是有计数值的,它的计数值可以用于系统资源计数(统计)。

一般来说信号量的值有两种:

  • 0:表示没有积累下来的post信号量操作,且可能有任务阻塞在此信号量上。
  • 正值:表示有一个或多个post信号量操作。

一般来说信号量多用于同步而非互斥,因为操作系统中会提供另一种互斥机制(互斥锁),互斥量的互斥作用更完善:互斥锁有优先级继承机制,而信号量则没有这个机制,此外互斥量还拥有所有者属性,我们会在后续讲解。

信号量也如队列一样,拥有阻塞机制。任务需要等待某个中断发生后,再去执行对应的处理,那么任务可以处于阻塞态等待信号量,直到中断发生后释放信号量后,该任务才被唤醒去执行对应的处理。在释放(post)信号量的时候能立即将等待的任务转变为就绪态,如果任务的优先级在就绪任务中是最高的,任务就能立即被运行,这就是操作系统中的“实时响应,实时处理”。在操作系统中使用信号量可以提高处理的效率。

信号量的数据结构

信号量控制块

TencentOS tiny 通过信号量控制块操作信号量,其数据类型为k_sem_t ,信号量控制块由多个元素组成,主要有 pend_obj_t 类型的pend_obj以及k_sem_cnt_t类型的count。而pend_obj有点类似于面向对象的继承,继承一些属性,里面有描述内核资源的类型(如信号量、队列、互斥量等,同时还有一个等待列表list)。而count则是一个简单的变量(它是16位的无符号整数),表示信号量的值。

typedef struct k_sem_st {
pend_obj_t pend_obj;
k_sem_cnt_t count;
} k_sem_t;

与信号量相关的宏定义

tos_config.h中,使能信号量的宏定义是TOS_CFG_SEM_EN

#define TOS_CFG_SEM_EN              1u

信号量实现

TencentOS tiny 中实现信号量非常简单,核心代码仅仅只有125行,可以说是非常少了。

创建信号量

系统中每个信号量都有对应的信号量控制块,信号量控制块中包含了信号量的所有信息,比如它的等待列表、它的资源类型,以及它的信号量值,那么可以想象一下,创建信号量的本质是不是就是对信号量控制块进行初始化呢?很显然就是这样子的。因为在后续对信号量的操作都是通过信号量控制块来操作的,如果控制块没有信息,那怎么能操作嘛~

创建信号量函数是tos_sem_create(),传入两个参数,一个是信号量控制块的指针*sem,另一个是信号量的初始值init_count,该值是非负整数即可,但主要不能超过65535

实际上就是调用pend_object_init()函数将信号量控制块中的sem->pend_obj成员变量进行初始化,它的资源类型被标识为PEND_TYPE_SEM。然后将sem->count成员变量设置为传递进来的信号量的初始值init_count

__API__ k_err_t tos_sem_create(k_sem_t *sem, k_sem_cnt_t init_count)
{
TOS_PTR_SANITY_CHECK(sem); pend_object_init(&sem->pend_obj, PEND_TYPE_SEM);
sem->count = init_count; return K_ERR_NONE;
}

销毁信号量

信号量销毁函数是根据信号量控制块直接销毁的,销毁之后信号量的所有信息都会被清除,而且不能再次使用这个信号量,当信号量被销毁时,其等待列表中存在任务,系统有必要将这些等待这些任务唤醒,并告知任务信号量已经被销毁了PEND_STATE_DESTROY。然后产生一次任务调度以切换到最高优先级任务执行。

TencentOS tiny 对信号量销毁的处理流程如下:

  1. 调用pend_is_nopending()函数判断一下是否有任务在等待信号量
  2. 如果有则调用pend_wakeup_all()函数将这些任务唤醒,并且告知等待任务信号量已经被销毁了(即设置任务控制块中的等待状态成员变量pend_statePEND_STATE_DESTROY)。
  3. 调用pend_object_deinit()函数将信号量控制块中的内容清除,最主要的是将控制块中的资源类型设置为PEND_TYPE_NONE,这样子就无法使用这个信号量了。
  4. 进行任务调度knl_sched()

注意:如果信号量控制块的RAM是由编译器静态分配的,所以即使是销毁了信号量,这个内存也是没办法释放的。当然你也可以使用动态内存为信号量控制块分配内存,只不过在销毁后要将这个内存释放掉,避免内存泄漏。

__API__ k_err_t tos_sem_destroy(k_sem_t *sem)
{
TOS_CPU_CPSR_ALLOC(); TOS_PTR_SANITY_CHECK(sem); #if TOS_CFG_OBJECT_VERIFY_EN > 0u
if (!pend_object_verify(&sem->pend_obj, PEND_TYPE_SEM)) {
return K_ERR_OBJ_INVALID;
}
#endif TOS_CPU_INT_DISABLE(); if (!pend_is_nopending(&sem->pend_obj)) {
pend_wakeup_all(&sem->pend_obj, PEND_STATE_DESTROY);
} pend_object_deinit(&sem->pend_obj); TOS_CPU_INT_ENABLE();
knl_sched(); return K_ERR_NONE;
}

获取信号量

tos_sem_pend()函数用于获取信号量,当信号量有效的时候,任务才能获取信号量。任务获取了某个信号量时,该信号量的可用个数减一,当它为0的时候,获取信号量的任务会进入阻塞态,阻塞时间timeout由用户指定,在指定时间还无法获取到信号量时,将发送超时,等待任务将自动恢复为就绪态。

获取信号量的过程如下:

  1. 首先检测传入的参数是否正确。
  2. 判断信号量控制块中的count成员变量是否大于0,大于0表示存在可用信号量,将count成员变量的值减1,任务获取成功后返回K_ERR_NONE
  3. 如果不存在信号量则可能会阻塞当前获取的任务,看一下用户指定的阻塞时间timeout是否为不阻塞TOS_TIME_NOWAIT,如果不阻塞则直接返回K_ERR_PEND_NOWAIT错误代码。
  4. 如果调度器被锁了knl_is_sched_locked(),则无法进行等待操作,返回错误代码K_ERR_PEND_SCHED_LOCKED,毕竟需要切换任务,调度器被锁则无法切换任务。
  5. 调用pend_task_block()函数将任务阻塞,该函数实际上就是将任务从就绪列表中移除k_rdyq.task_list_head[task_prio],并且插入到等待列表中object->list,如果等待的时间不是永久等待TOS_TIME_FOREVER,还会将任务插入时间列表中k_tick_list,阻塞时间为timeout,然后进行一次任务调度knl_sched()
  6. 当程序能行到pend_state2errno()时,则表示任务等获取到信号量,又或者等待发生了超时,那么就调用pend_state2errno()函数获取一下任务的等待状态,看一下是哪种情况导致任务恢复运行,并且将结果返回给调用获取信号量的任务。

注意:当获取信号量的任务能从阻塞中恢复运行,也不一定是获取到信号量,也可能是发生了超时,因此在写程序的时候必须要判断一下获取的信号量状态,如果是K_ERR_NONE则表示获取成功!

__API__ k_err_t tos_sem_pend(k_sem_t *sem, k_tick_t timeout)
{
TOS_CPU_CPSR_ALLOC(); TOS_PTR_SANITY_CHECK(sem);
TOS_IN_IRQ_CHECK(); #if TOS_CFG_OBJECT_VERIFY_EN > 0u
if (!pend_object_verify(&sem->pend_obj, PEND_TYPE_SEM)) {
return K_ERR_OBJ_INVALID;
}
#endif TOS_CPU_INT_DISABLE(); if (sem->count > (k_sem_cnt_t)0u) {
--sem->count;
TOS_CPU_INT_ENABLE();
return K_ERR_NONE;
} if (timeout == TOS_TIME_NOWAIT) { // no wait, return immediately
TOS_CPU_INT_ENABLE();
return K_ERR_PEND_NOWAIT;
} if (knl_is_sched_locked()) {
TOS_CPU_INT_ENABLE();
return K_ERR_PEND_SCHED_LOCKED;
} pend_task_block(k_curr_task, &sem->pend_obj, timeout); TOS_CPU_INT_ENABLE();
knl_sched(); return pend_state2errno(k_curr_task->pend_state);
}

释放信号量

任务或者中断服务程序都可以释放信号量(post),释放信号量的本质就是将信号量控制块的count成员变量的值加1,表示信号量有效,不过如果有任务在等待这个信号量时,信号量控制块的count成员变量的值是不会改变的,因为要唤醒等待任务,而唤醒等待任务的本质就是等待任务获取到信号量,信号量控制块的count成员变量的值要减1,这一来一回中,信号量控制块的count成员变量的值是不会改变的。

TencentOS tiny 中可以只让等待中的一个任务获取到信号量,也可以让所有等待任务都获取到信号量。分别对应的API是tos_sem_post()tos_sem_post_all()。顺便提一点,tos_sem_post_all()的设计模式其实是观察者模式,当一个观察的对象改变后,那么所有的观察者都会知道它改变了,具体可以看看《大话设计模式》这本书。

TencentOS tiny 中设计的很好的地方就是简单与低耦合,这两个api接口本质上都是调用sem_do_post()函数去释放信号量,只是通过opt参数不同选择不同的处理方法。

sem_do_post()函数中的处理也是非常简单明了的,其执行思路如下:

  1. 首先判断一下信号量是否溢出了,因为一个整数始终都会溢出的,总不能一直释放信号量让count成员变量的值加1吧,因此必须要判断一下是否溢出,如果sem->count 的值为 (k_sem_cnt_t)-1,则表示已经溢出,无法继续释放信号量,返回错误代码K_ERR_SEM_OVERFLOW。
  2. 调用pend_is_nopending()函数判断一下是否有任务在等待信号量,如果没有则将count成员变量的值加1,返回K_ERR_NONE表示释放信号量成功,因为此时没有唤醒任务也就无需任务调度,直接返回即可。
  3. 如果有任务在等待信号量,则count成员变量的值无需加1,直接调用pend_wakeup唤醒对应的任务即可,唤醒任务则是根据opt参数进行唤醒,可以唤醒等待中的一个任务或者是所有任务。
  4. 进行一次任务调度knl_sched()
__API__ k_err_t tos_sem_post(k_sem_t *sem)
{
TOS_PTR_SANITY_CHECK(sem); return sem_do_post(sem, OPT_POST_ONE);
} __API__ k_err_t tos_sem_post_all(k_sem_t *sem)
{
TOS_PTR_SANITY_CHECK(sem); return sem_do_post(sem, OPT_POST_ALL);
} __STATIC__ k_err_t sem_do_post(k_sem_t *sem, opt_post_t opt)
{
TOS_CPU_CPSR_ALLOC(); #if TOS_CFG_OBJECT_VERIFY_EN > 0u
if (!pend_object_verify(&sem->pend_obj, PEND_TYPE_SEM)) {
return K_ERR_OBJ_INVALID;
}
#endif TOS_CPU_INT_DISABLE(); if (sem->count == (k_sem_cnt_t)-1) {
TOS_CPU_INT_ENABLE();
return K_ERR_SEM_OVERFLOW;
} if (pend_is_nopending(&sem->pend_obj)) {
++sem->count;
TOS_CPU_INT_ENABLE();
return K_ERR_NONE;
} pend_wakeup(&sem->pend_obj, PEND_STATE_POST, opt); TOS_CPU_INT_ENABLE();
knl_sched(); return K_ERR_NONE;
}

关于为什么判断sem->count(k_sem_cnt_t)-1就代表溢出呢?我在C语言中举了个简单的例子:

#include <stdio.h>

int main()
{
unsigned int a = ~0;
if(a == (unsigned int)0XFFFFFFFF)
{
printf("OK\n");
}
if(a == (unsigned int)-1)
{
printf("OK\n");
} printf("unsigned int a = %d \n",a); return 0;
} 输出:
OK
OK
unsigned int a = -1

总结

代码精悍短小,思想清晰,非常建议深入学习~

喜欢就关注我吧!

相关代码可以在公众号后台回复 “ 19 ” 获取。

更多资料欢迎关注“物联网IoT开发”公众号!

【TencentOS tiny】深度源码分析(5)——信号量的更多相关文章

  1. 【TencentOS tiny】深度源码分析(4)——消息队列

    消息队列 在前一篇文章中[TencentOS tiny学习]源码分析(3)--队列 我们描述了TencentOS tiny的队列实现,同时也点出了TencentOS tiny的队列是依赖于消息队列的, ...

  2. Spring5深度源码分析(三)之AnnotationConfigApplicationContext启动原理分析

    代码地址:https://github.com/showkawa/spring-annotation/tree/master/src/main/java/com/brian AnnotationCon ...

  3. 【TencentOS tiny】深度源码分析(2)——调度器

    温馨提示:本文不描述与浮点相关的寄存器的内容,如需了解自行查阅(毕竟我自己也不懂) 调度器的基本概念 TencentOS tiny中提供的任务调度器是基于优先级的全抢占式调度,在系统运行过程中,当有比 ...

  4. 【TencentOS tiny】深度源码分析(1)——task

    任务的基本概念 从系统的角度看,任务是竞争系统资源的最小运行单元.TencentOS tiny是一个支持多任务的操作系统,任务可以使用或等待CPU.使用内存空间等系统资源,并独立于其它任务运行,理论上 ...

  5. 【TencentOS tiny】深度源码分析(6)——互斥锁

    互斥锁 互斥锁又称互斥互斥锁,是一种特殊的信号量,它和信号量不同的是,它具有互斥锁所有权.递归访问以及优先级继承等特性,在操作系统中常用于对临界资源的独占式处理.在任意时刻互斥锁的状态只有两种,开锁或 ...

  6. 【TencentOS tiny】深度源码分析(7)——事件

    引言 大家在裸机编程中很可能经常用到flag这种变量,用来标志一下某个事件的发生,然后在循环中判断这些标志是否发生,如果是等待多个事件的话,还可能会if((xxx_flag)&&(xx ...

  7. 【TencentOS tiny】深度源码分析(3)——队列

    队列基本概念 队列是一种常用于任务间通信的数据结构,队列可以在任务与任务间.中断和任务间传递消息,实现了任务接收来自其他任务或中断的不固定长度的消息,任务能够从队列里面读取消息,当队列中的消息是空时, ...

  8. 【TencentOS tiny】深度源码分析(8)——软件定时器

    软件定时器的基本概念 TencentOS tiny 的软件定时器是由操作系统提供的一类系统接口,它构建在硬件定时器基础之上,使系统能够提供不受硬件定时器资源限制的定时器服务,本质上软件定时器的使用相当 ...

  9. 转:[gevent源码分析] 深度分析gevent运行流程

    [gevent源码分析] 深度分析gevent运行流程 http://blog.csdn.net/yueguanghaidao/article/details/24281751 一直对gevent运行 ...

随机推荐

  1. ELK和EFK的区别

    ELK 是现阶段众多企业单位都在使用的一种日志分析系统,它能够方便的为我们收集你想要的日志并且展示出来 ELK是Elasticsearch.Logstash.Kibana的简称,这三者都是开源软件,通 ...

  2. Java连载63-异常处理try...catch...、方法getMessageyu printStackTrace

    一.处理异常的第二种方法 1.try......catch... 语法: try{ 可能出现异常的代码: }catch{ 处理异常的代码: }catch{ 注意: (1)引入了什么异常,catch里面 ...

  3. zookeeper扫盲

    一.zookeeper概述 a.zookeeper是一个开源的分布式的项目,为分布式业务提供协调服务的apache顶级项目 那什么是分布式的呢,通俗的说就是多个机器可以同时去处理一件事情 b.zook ...

  4. 微信小程序 存储数据到本地以及本地获取数据

    1.wx存储数据到本地以及本地获取数据 存到本地就是存到你的手机 wx.setStorageSync与wx.setStorage 1.1 wx.setStorageSync(string key, a ...

  5. 一起学Vue之入门篇

    概述 Vue (读音 /vjuː/,类似于 view) 是一套用于构建用户界面的渐进式框架.与其它大型框架不同的是,Vue 被设计为可以自底向上逐层应用.Vue 的核心库只关注视图层,不仅易于上手,还 ...

  6. JS---另一个定时器:一次性的

    之前学的定时器:setInterval和清除定时器 clearInterval(定时器id); //常用的,反复的执行 window.setInterval(function () { alert(& ...

  7. 【Dos】复制指定文件夹下所有文件到另外指定文件夹下

    bat代码如下: @echo off @set /p fromFile=from: @set /p toFile=to: rem 找到所有文件 dir /b /s %fromFile%\ *.gz & ...

  8. 【目录】Cocos2d-x系列

    1.Cocos2d-x的坐标系统 2.Cocos2d-x 点击菜单按键居中放大(无需修改底层代码) 3.发布Cocos2d-x的PC端程序 4.Cocos2d-x游戏实例<忍者飞镖>之对象 ...

  9. 监听属性watch

    immediate.deep data() { return { firstName: "刘", lastName: "XX", fullName: " ...

  10. c++11多线程笔记

    1 thread类thread f;线程等待join()线程分离detach() thread类不可拷贝复制 std::this_thread::yield(); 2 bind 与lambda表达式 ...