先初始化数据

import pandas as pd
import numpy as np
index = pd.Index(data=["Tom", "Bob", "Mary", "James", "Andy", "Alice"], name="name")
data = {
"age": [18, 30, np.nan, 40, np.nan, 30],
"city": ["Bei Jing", "Shang Hai", "Guang Zhou", "Shen Zhen", np.nan, " "],
"sex": [None, "male", "female", "male", np.nan, "unknown"],
"birth": ["2000-02-10", "1988-10-17", None, "1978-08-08", np.nan, "1988-10-17"]
}
user_info = pd.DataFrame(data=data, index=index)
user_info["birth"] = pd.to_datetime(user_info.birth)
user_info

为什么要用str属性

  文本数据也就是我们常说的字符串,Pandas 为 Series 提供了 str 属性,通过它可以方便的对每个元素进行操作。在之前已经了解过,在对 Series 中每个元素处理时,我们可以使用 map 或 apply 方法。

# 将每个城市都转为小写:
user_info.city.map(lambda x: x.lower())

  What?竟然出错了,错误原因是因为 float 类型的对象没有 lower 属性。这是因为缺失值 (np.nan)属于float 类型

  这时候我们的  str  属性操作来了,来看看如何使用吧

# 将文本转为小写
user_info.city.str.lower()
# 统计每个字符串的长度
user_info.city.str.len()

替换和分割

替换操作

# 将空字符串替换成下划线:
user_info.city.str.replace(" ", "_")
# 使用正则表达式将所有开头为 S 的城市替换为空字符串:
user_info.city.str.replace("^S.*", " ")

分割操作

# 根据空字符串来分割某一列:
user_info.city.str.split(" ")
"""
name
Tom [Bei, Jing]
Bob [Shang, Hai]
Mary [Guang, Zhou]
James [Shen, Zhen]
Andy NaN
Alice [, ]
Name: city, dtype: object
""" #分割列表中的元素可以使用 get 或 [] 符号进行访问:
user_info.city.str.split(" ").str.get(0)
"""
name
Tom Bei
Bob Shang
Mary Guang
James Shen
Andy NaN
Alice
Name: city, dtype: object
""" user_info.city.str.split(" ").str[1]
"""
name
Tom Jing
Bob Hai
Mary Zhou
James Zhen
Andy NaN
Alice
Name: city, dtype: object
""" # 设置参数 expand=True 可以轻松扩展此项以返回 DataFrame
user_info.city.str.split(" ", expand=True)
"""
    0    1
name
Tom Bei Jing
Bob Shang Hai
Mary Guang Zhou
James Shen Zhen
Andy NaN NaN
Alice
"""

提取子串

  从一个长的字符串中提取出子串。

提取第一个匹配的子串

  extract 只能够匹配出第一个子串,extract 方法接受一个正则表达式并至少包含一个捕获组,指定参数 expand=True 可以保证每次都返回 DataFrame。

  \s+ :一个或多个空字符串 
  (\w+):分组捕获任意多个字符 
  (\w+)\s+:在一个或多个空字符串前,分组捕获任意多个字符

# 匹配空字符串前面的所有的字母
user_info.city.str.extract("(\w+)\s+", expand=True)
"""
  0
name
Tom Bei
Bob Shang
Mary Guang
James Shen
Andy NaN
Alice NaN
""" # 如果使用多个组提取正则表达式会返回一个 DataFrame,每个组只有一列。
# 匹配出空字符串前面和后面的所有字母
user_info.city.str.extract("(\w+)\s+(\w+)", expand=True)
"""
   0   1
name   
Tom Bei Jing
Bob Shang Hai
Mary Guang Zhou
James Shen Zhen
Andy NaN NaN
Alice NaN NaN
"""

匹配所有子串

  extract 只能够匹配出第一个子串,使用 extractall 可以匹配出所有的子串。

# 将所有组的空白字符串前面的字母都匹配出来
user_info.city.str.extractall("(\w+)\s+")
"""
    0
name match
Tom 0 Bei
Bob 0 Shang
Mary 0 Guang
James 0 Shen
"""

测试是否包含子串

  使用 contains 来测试是否包含子串 --> 布尔值

# 测试城市是否包含子串 'Zh':
user_info.city.str.contains("Zh")
# 测试是否是以字母 'S' 开头:
user_info.city.str.contains("^S")

生成哑变量

  这是一个神奇的功能,通过 get_dummies 方法可以将字符串转为哑变量, sep 参数是指定哑变量之间的分隔符

user_info.city.str.get_dummies(sep=" ")

方法摘要

方法  描述
cat()    连接字符串
split() 在分隔符上分割字符串   
rsplit() 从字符串末尾开始分隔字符串
get()           索引到每个元素(检索第i个元素)
join()  使用分隔符在系列的每个元素中加入字符串
get_dummies()  在分隔符上分割字符串,返回虚拟变量的DataFrame 
contains() 如果每个字符串都包含pattern / regex,则返回布尔数组
replace()  用其他字符串替换pattern / regex的出现
repeat() ) 重复值(s.str.repeat(3)等同于x * 3 t2 )
pad()  将空格添加到字符串的左侧,右侧或两侧
center()  相当于str.center
ljust()  相当于str.ljust
rjust()  相当于str.rjust
zfill()  等同于str.zfill
wrap()  将长长的字符串拆分为长度小于给定宽度的行
slice()         切分Series中的每个字符串
slice_replace()  用传递的值替换每个字符串中的切片
count() 计数模式的发生
startswith()  相当于每个元素的str.startswith(pat)
endswith()  相当于每个元素的str.endswith(pat)
findall()  计算每个字符串的所有模式/正则表达式的列表 
match()  在每个元素上调用re.match,返回匹配的组作为列表
extract()  在每个元素上调用re.search,为每个元素返回一行DataFrame,为每个正则表达式捕获组返回一列
extractall()  在每个元素上调用re.findall,为每个匹配返回一行DataFrame,为每个正则表达式捕获组返回一列
len()  计算字符串长度
normalize()  返回Unicode标准格式。相当于unicodedata.normalize 

Pandas文本数据处理的更多相关文章

  1. Pandas缺失数据处理

    Pandas缺失数据处理 Pandas用np.nan代表缺失数据 reindex() 可以修改 索引,会返回一个数据的副本: df1 = df.reindex(index=dates[0:4], co ...

  2. pandas | 使用pandas进行数据处理——DataFrame篇

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是pandas数据处理专题的第二篇文章,我们一起来聊聊pandas当中最重要的数据结构--DataFrame. 上一篇文章当中我们介绍了 ...

  3. Pandas系列(四)-文本数据处理

    内容目录 1. 为什么要用str属性 2. 替换和分割 3. 提取子串 3.1 提取第一个匹配的子串 3.2 匹配所有子串 3.3 测试是否包含子串 3.4 生成哑变量 3.5 方法摘要 一.为什么要 ...

  4. pynlpir + pandas 文本分析

    pynlpir是中科院发布的一个分词系统,pandas(Python Data Analysis Library) 是python中一个常用的用来进行数据分析和统计的库,利用这两个库能够对中文文本数据 ...

  5. Pandas日期数据处理:如何按日期筛选、显示及统计数据

    前言 pandas有着强大的日期数据处理功能,本期我们来了解下pandas处理日期数据的一些基本功能,主要包括以下三个方面: 按日期筛选数据 按日期显示数据 按日期统计数据 运行环境为 windows ...

  6. Pandas文本操作之读取操作

    读写文本格式的数据 pandas中的解析函数 函数 说明 read_csv 从文件.url.文件型对象中加载带分隔符的数据,默认分隔符为逗号 read_table 从文件.url.文件型对象中加载带分 ...

  7. 5,pandas高级数据处理

    1.删除重复元素 使用duplicated()函数检测重复的行,返回元素为布尔类型的Series对象,每个元素对应一行,如果该行不是第一次出现,则元素为True - keep参数:指定保留哪一重复的行 ...

  8. pandas之数据处理

    首先,数据加载 pandas提供了一些用于将表格型数据读取为DataFrame对象的函数,期中read_csv和read_table这两个使用最多. 1.删除重复元素 使用duplicated()函数 ...

  9. Python——Pandas 时间序列数据处理

    介绍 Pandas 是非常著名的开源数据处理库,我们可以通过它完成对数据集进行快速读取.转换.过滤.分析等一系列操作.同样,Pandas 已经被证明为是非常强大的用于处理时间序列数据的工具.本节将介绍 ...

随机推荐

  1. 用哈希算法的思想解决排序和字符串去重问题,时间复杂度为O(N)

    第一个题目: int a[] = {12,13,12,13,19,18,15,12,15,16,17},要求对数组a进行排序,要求时间复杂度为O(N) 我们所知道的常规排序中,最优的解法也就是O(N* ...

  2. 安装Office Visio 提示Office 16 Click-to-Run Extensibility Component

    今天在安装 Office Visio 2016 时,点击安装程序,出现以下错误:   出现这个问题的原因就是你的电脑以前安装过32位的office,卸载时,注册表没有清理干净. 解决方案: 在win1 ...

  3. 为什么一个Http Header中的空格会被骇客利用 - HTTP request smuggling

    figure:last-child { margin-bottom: 0.5rem; } #write ol, #write ul { position: relative; } img { max- ...

  4. Unity动态改变物体遮挡关系

    在动态创建物体时,通常同父级下先创建的子物体会被后创建的遮挡,此时就需要我们用代码改变对象的层级. GameObject go;go.transform.SetAsLastSibling();//设置 ...

  5. Linux上的Nginx上设置支持PHP的解析

    当前的运行环境为,PHP7.2.2以 FastCGI 模式运行,默认端口为:9000,Nginx1.15.6 打开nginx配置文件 vi /usr/local/nginx/conf/nginx.co ...

  6. 树莓派(4B)Linux + .Net Core嵌入式-初始化环境(一)

    一.树莓派简单介绍 二.软&件准备 硬件:树莓派4B主机.电源线.TF卡&TF读卡器.PC 软件:win32diskimager(用于烧系统到TF卡).Xshell或Windows T ...

  7. 帝国cms网站管理系统之安全设置最优化分享

    首先我们来认识一下帝国CMS安全认证特性:帝国登录四重安全验证:第一重:密码双重MD5加密,密码不可破解,假如数据库被下载,也无法获取真实密码.第二重:后台目录自定义,假如对方知道密码也找不到登录后台 ...

  8. Fibonacci 数列和 Lucas 数列的性质、推论及其证明

    Fibonacci 数列 设f(x)=1,x∈{1,2}=f(x−1)+f(x−2),x∈[3,∞)\begin{aligned}f(x)&=1,\quad\quad\quad\quad\qu ...

  9. luogu P3936 Coloring

    [返回模拟退火略解] 题目描述 在一个 n×mn\times mn×m 的矩阵中,每个点都染了一种颜色(只能是 [1,c][1,c][1,c] 中的一种),求一种方案,使得相邻异色点对数最小. Sol ...

  10. Zeebe服务学习5-多实例特性实践

    一.背景 在0.21版本之前,Zeebe不支持多实例元素,在2019年10月9号发布的0.21版本中,加入这一特性, 主要是体现在Zeebe Modeler 0.7.0以及之后的版本中. 二.特性介绍 ...